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Abstract 

In this work (Part I), we reinvestigate the study of the stability of the Covid-19 mathematical model constructed by Shah 

et al. (2020) [1]. In their paper, the transmission of the virus under different control strategies is modeled thanks to a 

generalized SEIR model. This model is characterized by a five dimensional nonlinear dynamical system, where the basic 

reproduction number 𝑅0can be established by using the next generation matrix method. In this work (Part I), it is 

established that the disease free equilibrium point is locally as well as globally asymptotically stable when 𝑅0 < 1. When 

𝑅0 > 1, the local and global asymptotic stability of the equilibrium are determined employing the second additive 

compound matrix approach and the Li-Wang’s (1998) stability criterion  for real matrices [2]. In the second paper (Part 

II), some control parameters with uncertainties will be added to stabilize the five-dimensional Covid-19 system studied 

here, in order to force the trajectories to go to the equilibria. The stability of the Covid-19 system with these new 

parameters will also be assessed in Intissar (2020) [3] applying the Li-Wang criterion and compound matrices theory. All 

sophisticated technical calculations including those in part I will be provided in appendices of the part II.  

Keywords: Epidemic Models; Endemic Equilibrium; Stability of Matrices; Next Generation Matrix; Second Additive Compound 

Matrix; Global Stability; Dynamical Systems; Covid-19 Model. 

Introduction 

The evolution of epidemics is one of the most dangerous problems for a society. As mankind already faced severe 

pandemics such as the Spanish flu in 1917, the Honk Kong flu (H3N2) in 1968 and the swine flu (H1N1) in 2009, the 

forecast of epidemics evolution appears to be one of the most critical topics for our societies. On January 7, 2020, the 

isolation of a new coronavirus by a team of Chinese scientists, causing severe acute respiratory syndrome for the 

patients infected with this virus [4, 5] (later designated coronavirus disease 2019 (Covid-19) by the World Health 

Organization), shed a new light on this issue. 

Several efforts were done since the 1970’s in order to understand the spread of diseases and to forecast their 

evolution through mathematical models. Amongst the various papers and preprints published to better understand the 

properties of the Covid-19 and model its evolution in different countries, a mathematical Covid-19 model was 

constructed by Shah et al. (2020) [1] to study the human to human transmission of the Covid-19. This model is 

reinvestigated in this paper.  

The work is organized as follows: 

 In section 1, the mathematical Covid-19 model and its parameters are presented, alongside with some preliminary 

results on linear stability analysis for systems of ordinary differential equations. 
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 In section 2, the Li-Wang’s stability criterion for real matrices (used to study the stability of an epidemic model of 

SEIR type with varying total population) is presented and some spectral properties of M-matrices are recalled. 

 In section 3, some preliminary definitions and some lemmas for linear stability of our (covid-19) system are 

provided.  

 To that regard, a very important threshold quantity is the basic reproduction number, sometimes called the basic 

reproductive number or basic reproductive ratio (Heffernan et al. 2005 [6]), which is usually denoted by 𝑅0. 

From an epidemiological perspective, 𝑅0 refers to the average number of secondary cases produced by one infected 

individual introduced into a population of susceptible individuals, where an infected individual has acquired the 

disease, and susceptible individuals are healthy but can acquire the disease. In reality, the value of 𝑅0 for a specific 

disease depends on many variables, such as location and density of population. 

 In section 4, the study of the stability of equilibrium points of the (Covid-19) system is performed using the 𝑅0 

criterion and Li-Wang criterion on second additive compound matrix associated to Jacobian matrix of the (covid-

19) system.  

The study of the stability of Jacobian matrices of an order less than three of a dynamic system yields a reasonable 

𝑅0, but for more complex compartmental models, especially those with more infected compartments, the study of the 

stability is difficult as it relies on the algebraic Routh-Hurwitz conditions for stability of the Jacobian matrix. An 

alternative method proposed by Diekmann et al. (1990) [7] and elaborated by van den Driessche and Watmough 

(2002) [8] gives a way of determining 𝑅0 for a compartmental model by using the next generation matrix. 

The main part of the section 4 is the determination of equilibrium points of our Covid-19 system and the explicit 

calculation of additive compound matrix of Jacobian matrix associated to this system. In this work, it is the first time 

that the explicit calculation of a second additive compound matrix associated with a square matrix of order 5 is given. 

1. Presentation of Mathematical Covid-19 Model With Its Parameters and Some Preliminary 

Results 

A mathematical Covid-19 model is constructed by Shah et al. (2020) [1] to study human to human transmission of 

the Covid-19.  

The model consists all possible human to human transmission of the virus.  

The Covid-2019 is highly contagious in nature and infected cases are seen in most of the countries around the 

world, hence in the model the susceptible population class is ignored and whole population is divided in five 

compartments: 

(1) class of exposed individuals E(t) (individuals surrounded by infection by not yet infected), 

(2) class of infected individuals by Covid-19 I(t),  

(3) class of critically infected individuals by Covid-19 C(t), 

(4) class of hospitalised individuals H(t), and  

(5) class of dead individuals due to Covid-19 D(t). 

Human to human transmission dynamics of Covid-19 is describe graphically in 

 

 Table of parameters used in the model is described as follow: 

B : Birth rate of class of exposed individuals : 0.80 Calculated 

𝜇 Natural death rate : 0.01 Assumed 
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𝛽1 : Transmission rate of individuals moving from exposed to infected class: 0.55 Calculated 

𝛽2 : Rate at which infected individuals goes into sever condition or in critical condition : 0.40 Calculated 

𝛽3 : Rate at which critically infected individuals get hospitalized :0.60 Calculated 

𝛽4 : Rate by which hospitalized individuals not recovered and remain in critical condition: 0.80 Calculated 

𝛽5 : Mortality rate of critically infected individuals: 0.34 Calculated 

𝛽6 : Mortality rate of infected individuals: 0.30 Calculated 

𝛽7 : Rate by which infected dead body spreads infection: 0.35 Assumed 

𝛽8 : Rate at which infected individuals get hospitalized: 0.30 Calculated 

𝛽9 : Rate at which hospitalised individuals get recovered and become exposed again : 0.35 Assumed  

𝛽10 : Rate at which infected individuals recovered themselves due to strong immunity and again become exposed  

Using the above representation, dynamical system of set of nonlinear differential for the model is formulated as 

follow:  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝐸

𝑑𝑡
= 𝐵 − 𝛽1𝐸𝐼 + 𝛽7𝐸𝐷 + 𝛽9𝐻 + 𝛽10𝐸𝐼 − 𝜇𝐸    

    
𝑑𝐼

𝑑𝑡
= 𝛽1𝐸𝐼 − 𝛽2𝐼 − 𝛽6𝐼 − 𝛽8𝐼 − 𝛽10𝐸𝐼 − 𝜇𝐼            

    
𝑑𝐶

𝑑𝑡
= 𝛽2𝐼 − 𝛽5𝐶 − 𝛽3𝐶 + 𝛽4𝐻 − 𝜇𝐶                        

    
𝑑𝐻

𝑑𝑡
= 𝛽3𝐶 − 𝛽4𝐻 + 𝛽8𝐼 − 𝛽9𝐻 − 𝜇𝐻                        

    
𝑑𝐷

𝑑𝑡
= 𝛽5𝐶 + 𝛽6𝐼 − 𝛽7𝐷𝐸                                            

                                                                                        (Covid-19) 

Remark 1.1 

(i) All of the parameters in (covid-19) are assumed to be nonnegative. 

(ii) 
𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝐶

𝑑𝑡
+

𝑑𝐻

𝑑𝑡
+

𝑑𝐷

𝑑𝑡
= 𝐵 − 𝜇(𝐸 + 𝐼 + 𝐶 + 𝐻 + 𝐷)         (1.1) 

(iii) 
𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝐶

𝑑𝑡
+

𝑑𝐻

𝑑𝑡
+

𝑑𝐷

𝑑𝑡
≤ 0 ⇐ 𝐸 + 𝐼 + 𝐶 + 𝐻 + 𝐷 ≤

𝐵

𝜇
               (1.2) 

(iv) A detailed description of the model can be found in shah et al. (2020) [1] and there in references.: 

(v) For other mathematical systems of epidemic models, we can consult these references [9-11]. 

Theorem 1.2 

 (i) The positive orthant ℝ+
5  is positively invariant under the flow of (covid-19). Precisely, if 𝐸(0) > 0; 𝐼(0) > 0; 

𝐶(0) > 0; 𝐻(0) > 0; 𝐷(0) > 0 then ∀𝑡 > 0; 𝐸(𝑡) > 0; 𝐼(𝑡) > 0 𝐶(𝑡) > 0; 𝐻(𝑡) > 0; 𝐷(𝑡) > 0. 

Proof 

(i) • Let’s suppose 𝐼(0) > 0, then from the second equation of (covid-19)), if  

𝜒(𝑡) = (𝛽10 − 𝛽1)𝐸 + 𝛽2 + 𝛽6 + 𝛽8 + 𝜇 then the integration from 0 to 𝑡 > 0 gives: 

𝐼(𝑡) = 𝐼(0)𝑒−∫  
𝑡
0 𝜒(𝑠)𝑑𝑠. 

Therefore 𝐼(𝑡) > 0; ∀𝑡 ≥ 0. 

• Consider the following sub-equations related to the variables 𝐶 and 𝐻: 

{
  
 

  
 
𝑑𝐶(𝑡)

𝑑𝑡
= 𝛽2𝐼(𝑡) − 𝛽5𝐶(𝑡) − 𝛽3𝐶(𝑡) + 𝛽4𝐻(𝑡) − 𝜇𝐶(𝑡)

    
𝑑𝐻(𝑡)

𝑑𝑡
= 𝛽3𝐶(𝑡) − 𝛽4𝐻(𝑡) + 𝛽8𝐼(𝑡) − 𝛽9𝐻(𝑡) − 𝜇𝐻(𝑡)

    
𝐶(0) > 0 𝑎𝑛𝑑 𝐻(0) > 0                                                        

               (1.3) 
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The system (1.3) takes the matrix form: 

𝑑𝑈

𝑑𝑡
= 𝑀𝑈(𝑡) + 𝐹(𝑡)                (1.4) 

  where 

  𝑀 = (

−(𝛽5 + 𝛽3 + 𝜇)              𝛽4
    
              𝛽3 −(𝛽4 + 𝛽9 + 𝜇)

)                (1.5) 

  And; 

𝑈(𝑡) = (

𝐶(𝑡)
    
𝐻(𝑡)

) ;   𝑈(0) = (

𝐶(0)
    
𝐻(0)

) > 0 and 𝐹(𝑡) = (

𝛽2𝐼(𝑡)
    
𝛽8𝐼(𝑡)

) > 0. 

 One can turn the Cauchy problem (1.3) into an integral equation by using the following so called Duhamel formula: 

  𝑈(𝑡) = 𝑒𝑡𝑀𝑈(0) + ∫  
𝑡

0
𝑒(𝑡−𝑠)𝑀𝐹(𝑠)𝑑𝑠 

 Therefore 𝐶(𝑡) > 0; ∀𝑡 ≥ 0. and 𝐻(𝑡) > 0; ∀𝑡 ≥ 0. 

We can observe also that 𝑀 is a Metzler matrix (a matrix 𝐴 = (𝑎𝑖𝑗1 ≤ 𝑖, 𝑗 ≤ 𝑛 is a Metzler matrix if all of its 

elements are non-negative except for those on the main diagonal, which are unconstrained.) That is, a Metzler matrix 

is any matrix 𝐴 which satisfies 𝐴 = (𝑎𝑖𝑗);     𝑎𝑖𝑗 ≥ 0,    𝑖 ≠ 𝑗. 

  Thus,  (1.3) is a monotone system. It follows that, ℝ+
2  is invariant under the flow of (1.3). 

  • Let’s suppose 𝐸(0) > 0, then from the first equation of (covid-19)), if 

  𝜒(𝑡) = (𝛽1 − 𝛽10)𝐼 − 𝛽7𝐷 + 𝜇 and 𝜋(𝑡) = 𝛽9𝐻(𝑡) + 𝐵 which is > 0. 

  the integration from 0 to 𝑡 > 0 gives: 

  𝐸(𝑡) = 𝐸(0)𝑒−∫  
𝑡
0 𝜒(𝑠)𝑑𝑠 + 𝑒−∫  

𝑡
0 𝜒(𝑠)𝑑𝑠 ∫  

𝑡

0
𝜋(𝑢)𝑒∫  

𝑢
0 𝜒(𝑤)𝑑𝑤𝑑𝑢. 

  Therefore 𝐸(𝑡) > 0; ∀𝑡 ≥ 0. 

  • Let’s suppose 𝐷(0) > 0, then from the 5𝑡ℎ equation of (covid-19)), if 

  𝜒(𝑡) = 𝛽7𝐸 and 𝜋(𝑡) = 𝛽6𝐼(𝑡) + 𝛽5𝐶(𝑡) which is > 0. 

  the integration from 0 to 𝑡 > 0 gives : 

  𝐷(𝑡) = 𝐷(0)𝑒−∫  
𝑡
0 𝜒(𝑠)𝑑𝑠 + 𝑒−∫  

𝑡
0 𝜒(𝑠)𝑑𝑠 ∫  

𝑡

0
𝜋(𝑢)𝑒∫  

𝑢
0 𝜒(𝑤)𝑑𝑤𝑑𝑢. 

  Therefore 𝐷(𝑡) > 0; ∀𝑡 ≥ 0. 

 

Remark 1.3 

  (i) The theorem 1.2 ensures the existence and uniqueness of global (in time) solution of system (covid-19). 

  (ii) Let Λ be the domain Λ = {(𝐸, 𝐵, 𝐶, 𝐻, 𝐷) ∈ ℝ+
5 ; 𝐸 + 𝐼 + 𝐶 + 𝐻 + 𝐷 ≤

𝐵

𝜇
} then this domain is positively invariant, 

and all the solutions of the system (covid-19) are remain in this domain. 
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  Consider the following n-dimensional system: 

  𝑥′(𝑡) = 𝑓(𝑥(𝑡)); 𝑡 ≥ 0                (1.6) 

  where 𝑓: Ω ⊂ ℝ𝑛 ⟶ℝ𝑛 is 𝒞1-function.  

Definition 1.4 

   • We say that 𝑥∗ is an equilibrium point of (1.6) if 𝑓(𝑥∗) = 0. 

   • We will say that an equilibrium point 𝑥∗ is stable if: 

  ∀ 𝜖 > 0, ∃𝛿 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ||𝑥 − 𝑥∗|| < 𝛿 𝑎𝑛𝑑 𝑡 > 0 ⟹ ||𝜙𝑡(𝑥) − 𝑥
∗|| < 𝜖 

where 𝜙𝑡(𝑥) is a solution of (1.6) 

   • We will say that an equilibrium point 𝑥∗ is asymptotically stable if for each neighborhood 𝕌 of 𝑥∗ there exists a 

neighborhood 𝕎 such that 𝑥∗ ∈ 𝕎 ⊂ 𝕌 and 𝑥(0) ∈ 𝕎 implies that the solution 𝜙𝑡(𝑥) satisfies 𝜙𝑡(𝑥) ∈ 𝕌 for all 

𝑡 > 0, and that 𝜙𝑡(𝑥) ⟶ 𝑥∗as 𝑡 ⟶ +∞. 

In particular, a system is called asymptotically stable around its equilibrium point at the origin if it satisfies the 

following two conditions: 

  1. Given any 𝜖 > 0; ∃𝛿1 > 0 such that if ||𝑥(0)|| < 𝛿1, then  

  ||𝜙𝑡(𝑥)|| < 𝜖, ∀𝑡 > 0. 

  2. ∃𝛿1 > 0 such that if ||𝑥(0)|| < 𝛿2, then 𝜙𝑡(𝑥) ⟶ 0 as 𝑡 ⟶ ∞.               ⧫ 

The first condition requires that the state trajectory can be confined to an arbitrarily small “ball" centered at the 

equilibrium point and of radius 𝜖, when released from an arbitrary initial condition in a ball of sufficiently small (but 

positive) radius 𝛿1. This is called stability in the sense of Lyapunov (i.s.L.). 

It is possible to have stability in the sense of Lyapunov without having asymptotic stability, in which case we refer 

to the equilibrium point as marginally stable. Nonlinear systems also exist that satisfy the second requirement without 

being stable i.s.L. An equilibrium point that is not stable i.s.L. is termed unstable. 

 Linear stability analysis for systems of ordinary differential equations 

Consider the n-dimensional dynamical system (1.6) written in the following form: 

  
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥(𝑡));                (1.7) 

  𝑥(𝑡) = (𝑥1(𝑡), . . , 𝑥𝑖(𝑡), . . , 𝑥𝑛(𝑡),1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑡 < +∞  

  Where: 

  𝑥(0) = (𝑥1(0), . . , 𝑥𝑖(0), . . , 𝑥𝑛(0)) = 𝑥0 is fixed  

  And; 

  𝑓𝑖: ℝ
𝑛 ⟶ℝ are 𝒞1-functions which are given. 

  and suppose that 𝑥∗ = (𝑥1
∗, . . . , 𝑥𝑖

∗, . . . . , 𝑥𝑛
∗) is a steady state, that is, 𝑓𝑖(𝑥

∗) = 0. 

The question of interest is whether the steady state is stable or unstable. Consider a small perturbation from the 

steady state by letting 𝑥𝑖 = 𝑥𝑖
∗ + 𝑢𝑖 , 1 ≤ 𝑖 ≤ 𝑛 where both 𝑢𝑖 , 1 ≤ 𝑖 are understood to be small. The question of 

interest translates into the following: will 𝑢𝑖 , 1 ≤ 𝑖 where both grow (so that 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 move away from the steady 

state), or will they decay to zero (so that 𝑥𝑖 , ,1 ≤ 𝑖 ≤ 𝑛 move towards the steady state)? 

In the former case, we say that the steady state is unstable, in the latter it is stable.To see whether the perturbation 

grows or decays, we need to derive differential equations for 𝑢𝑖 , 1 ≤ 𝑖 We do so as follows: 

  
𝑑𝑢𝑖

𝑑𝑡
=

𝑑𝑥𝑖

𝑑𝑡
, 1 ≤ 𝑖 ≤ 𝑛 (since 𝑥𝑖

∗ is constant 1 ≤ 𝑖 ≤ 𝑛)  

  = 𝑓𝑖(𝑥) (by definition) 

  = 𝑓𝑖(𝑥
∗ + 𝑢), 𝑢 = (𝑢1, . . . , 𝑢𝑖 , . . . . 𝑢𝑛) (substitution) 

  = 𝑓𝑖(𝑥
∗) + ∑  𝑛

𝑗=1
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝑥∗)+. . .. (Taylor series expansion) 

  = ∑  𝑛
𝑗=1

𝜕𝑓𝑖

𝜕𝑥𝑗
(𝑥∗)+. . .. (since 𝑓𝑖(𝑥

∗) = 0) 

The . . .. denote higher order terms, Since 𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛 are assumed to be small, these higher order terms are 
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extremely small. 

The above linear system for 𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑛 has the trivial steady state 𝑢𝑖 = 0; 1 ≤ 𝑖 ≤ 𝑛, and the stability of this 

trivial steady state is determined by the eigenvalues of the matrix, as follows:  

If we can safely neglect the higher order terms, we obtain the following linear system of equations governing the 

evolution of the perturbations 𝑢𝑖 , 1 ≤ 𝑖 ≤ 𝑛: 

  

(

 
 
 
 
 
 
 
 
 
 
 
 

𝑑𝑢1

𝑑𝑡
    
𝑑𝑢2

𝑑𝑡
    
.
    
.
    
.
    .
    
    
𝑑𝑢𝑛

𝑑𝑡

)

 
 
 
 
 
 
 
 
 
 
 
 

 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑓1

𝜕𝑥1
(𝑥∗) . .

𝜕𝑓1

𝜕𝑥𝑗
(𝑥∗) . . .

𝜕𝑓1

𝜕𝑥𝑛
(𝑥∗)

    
𝜕𝑓2

𝜕𝑥1
(𝑥∗) . .

𝜕𝑓2

𝜕𝑥𝑗
(𝑥∗) . . .

𝜕𝑓2

𝜕𝑥𝑛
(𝑥∗)

    
.
    .
    
𝜕𝑓𝑖

𝜕𝑥1
(𝑥∗) . .

𝜕𝑓𝑖

𝜕𝑥𝑗
(𝑥∗) . . .

𝜕𝑓𝑖

𝜕𝑥𝑛
(𝑥∗)

    
.
    
𝜕𝑓𝑛

𝜕𝑥1
(𝑥∗) . .

𝜕𝑓𝑛

𝜕𝑥𝑗
(𝑥∗) . . .

𝜕𝑓𝑛

𝜕𝑥𝑛
(𝑥∗)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑢1
    
𝑢2
    
.
    
.
    
.
.
    
.
    
.    
    
𝑢𝑛
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

We refer to the matrix as the Jacobian matrix of the original system at the steady state 𝑥∗. 

  
𝑑𝑢

𝑑𝑡
= 𝕁𝑥∗𝑢 where 𝕁𝑥∗ = (

𝜕𝑓𝑖(𝑥
∗)

𝜕𝑥𝑗
)1≤𝑖,𝑗≤𝑛.                (1.8) 

Theorem 1.5 

if the eigenvalues of the Jacobian matrix all have real parts less than zero, then the steady state is stable. 

if the eigenvalues of the Jacobian matrix all have real parts < 0, then the steady state is asymptotically stable. 

If at least one of the eigenvalues of the Jacobian matrix has real part greater than zero, then the steady state is 

unstable. 

Otherwise there is no conclusion (then we have a borderline case between stability and instability; such cases 

require an investigation of the higher order terms we neglected, and this requires more sophisticated mathematical 

machinery discussed in advanced courses on ordinary differential equations).                ⧫ 

Definition 1.6 

An equilibrium point 𝑥∗ is said hyperbolic if all eigenvalues of the Jacobian matrix have real parts ≠ 0. 

Remark 1.7 

A hyperbolic equilibrium point 𝑥∗ is asymptotically stable if the eigenvalues of the Jacobian matrix all have real 

parts < 0 or otherwise it is unstable. 

Let 𝐴 be the Jacobian matrix, assume that it is a real hyperbolic matrix, i.e. ℜ𝑒𝜆 ≠ 0 for for all eigenvalues 𝜆 of 𝐴, 

then  

There is a linear change of variables [good coordinates (𝑥𝑠, 𝑥𝑢)] that induces a splitting into stable and unstable 

spaces ℝ𝑛 = ℰ𝑠⊕ℰ𝑢 so that in the new variables  

  𝐴 = (

𝐴𝑠 0

    
0 𝐴𝑢

)  

  and a constant 𝛼 > 0 so that for 𝑡 ≥ 0, 

  {

||𝑒𝑡𝐴𝑥𝑠||     ≤ 𝑒−𝛼𝑡||𝑥𝑠||    
    
||𝑒−𝑡𝐴𝑥𝑢||     ≤ 𝑒−𝛼𝑡||𝑥𝑢||
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We have written 𝑥𝑠 = 𝑃𝑠𝑥, 𝑥𝑢 = 𝑃𝑢𝑥 where 𝑃𝑠: ℝ
𝑛 ⟶ ℰ𝑠 and 𝑃𝑢: ℝ

𝑛 ⟶ ℰ𝑢 are the orthogonal projections. 

Last but not least, there is a theorem (the Hartman- Grobman Theorem) that guarantees that the stability of the 

steady state 𝑥∗ of the original system is the same as the stability of the trivial steady state 0 of the linearized system. 

Let 𝑥∗ be an equilibrium point of nonlinear system (1.6) then by applying a translation, we can always assume 0 is 

a equilibrium point of (1.6). 

  • Poincaré in his dissertation showed that if 𝑓 is analytic at the equilibrium point 𝑥∗, and the eigenvalues of 𝕁𝑥∗ are 

nonresonant, then there is a formal power series of change of variable to change (1.6) to a linear system [4, 12] . 

  • Hartman and Grobman showed that if 𝑓 is continuously differentiable, then there is a neighborhood of a 

hyperbolic equilibrium point and a homeomorphism on this neighborhood, such that the system in this neighborhood 

is changed to a linear system under such a homeomorphism [13-17]. 

Theorem 1.8 (Hartman-Grobman theorem)  

Let Ω be an open set of ℝ𝑛 containing the origin, 𝑓: Ω ⟶ ℝ𝑛 be a 𝒞1- function on Ω, 0 be a hyperbolic 

equilibrium point of the system (1.6), and 𝕌𝑟 = {𝑥; ||𝑥|| < 𝑟} be the neighborhood of the origin of radius 𝑟. For any 

𝑟, 𝜖 > 0 such that 𝕌𝑟+𝜖 ⊂ Ω, there exists a transformation 𝑦 = 𝐻(𝑥), 𝐻(0) = 0 and 𝐻 is a homeomorphism in a 

neighborhood of 0, such that the system (1.6) is changed into the linear system 

  𝑦′(𝑡) = 𝔸𝑦,    𝔸 = (
𝜕𝑓𝑖(0)

𝜕𝑥𝑗
)1≤𝑖,𝑗≤𝑛 in 𝕌𝑟 . 

 Proof  

 See: http://www.math.utah.edu/ treiberg/M6414HartmanGrobman.pdf. 

  Thus, the procedure to determine stability of 𝑥∗ is as follows: 

  1. Compute all partial derivatives of the right-hand-side of the original system of differential equations, and construct 

the Jacobian matrix. 

  2. Evaluate the Jacobian matrix at the steady state. 

  3. Compute eigenvalues. 

  4. Conclude stability or instability based on the real parts of the eigenvalues. 

Definition 1.9 (Liapunov function) 

Let 𝑥∗ be an equilibrium point of (1.6), 𝕌 ⊂ Ω be a neighborhood of 𝑥∗ and 𝐿:𝕌 ⟶ ℝ be a continuous function. 

We say that 𝐿 is Liapunov function for (1.6) at 𝑥∗ if  

  (1) 𝐿(𝑥∗) = 0 and for every 𝑥 ≠ 𝑥∗ we have 𝐿(𝑥) > 0; 

  (2) The function 𝑡 ⟶ 𝐿(𝜙𝑡(𝑥)) is decreasing. 

We say that 𝐿 is strictly Liapunov function for (1.6) at 𝑥∗ if 𝐿 satisfy (1) and  

  (3) the function 𝑡 ⟶ 𝐿(𝜙𝑡(𝑥)) is strictly decreasing. 

Remark 1.10  

If 𝐿 is 𝒞1 function then we can replace : 

  - The condition (2) by ∀ 𝑥 ∈ 𝕌,< ∇𝐿(𝑥), 𝑓(𝑥) >≤ 0. 

  and 

  - The condition (3) by ∀ 𝑥 ∈ 𝕌,< ∇𝐿(𝑥), 𝑓(𝑥) >< 0. 

Theorem 1.11  

  If (1.6) admits a Liapunov function at an equilibrium point 𝑥∗, then 𝑥∗ is stable and if the Liapunov function is 

strictly decreasing then 𝑥∗ is asymptotically stable.                ⧫ 

We outline in the next section the Li-Wang’s stability criterion for real matrices and we recall of some spectral 

properties of 𝑀 −matrices. 
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2. On Li-Wang’s Stability Criterion of Real Matrix 

Definition 2.1 

    Let 𝔸 be an 𝑛 × 𝑛 matrix and let 𝜎(𝔸) be its spectrum. The stability modulus of 𝔸 is defined by 𝑠(𝔸) =
𝑀𝑎𝑥{ℛ𝑒𝜆; 𝜆 ∈ 𝜎(𝔸)} i.e. s(𝔸) is the maximum real part of the eigenvalues of 𝔸 called also the spectral abscissa. 

  𝔸 is said to be stable if 𝑠(𝔸) < 0.                ⧫  

    The stability of a matrix is related to the Routh-Hurwitz problem on the number of zeros of a polynomial that have 

negative real parts. Routh-Hurwitz discovered necessary and sufficient conditions for all of the zeros to have negative 

real parts, which are known today as the Routh-Hurwitz conditions. A good and concise account of the Routh-Hurwitz 

problem can be found in Banks et al. (1992) [5]. 

    The Li-Wang criterion offer an alternative to the well-known Routh-Hurwitz. It based on Lozinski𝑖̆ measures and 

second additive compound matrix. For detailed discussions on compound matrices, the reader is referred to Li-Wang 

Li-Wang [2] and for additive compound matrices to Fiedler (1974) [18]. 

  • In Li-Wang [2] a necessary and sufficient condition for the stability of an 𝑛 × 𝑛 matrix with real entries is derived 

(Li-Wang criterion) by using a simple spectral property of additive compound matrices. 

  • A survey is given of a connection between compound matrices and ordinary differential equations by Muldowney 

(1990) [19]. 

And for an application of Li-Wang criterion, we can consult [7, 20-22]. 

    Now, let 𝕄𝑛(𝕂) be the linear space of 𝑛 × 𝑛 matrices with entries in 𝕂, 

where 𝕂 = ℝ or ℂ. 

Definition 2.2 

  • Let ∧ denote the exterior product in 𝕂𝑛, and let 1 ≤ 𝑘 ≤ 𝑛 be an integer. With respect to the canonical basis in the 

𝑘𝑡ℎ exterior product space ∧𝑘 𝕂𝑛, the 𝑘𝑡ℎ additive compound matrix 𝔸[𝑘] of 𝔸 is a linear operator on ∧𝑘 𝕂𝑛 whose 

definition on a decomposable element 𝑥1 ∧ 𝑥2 ∧. . . . . .∧ 𝑥𝑘 is 

  𝔸[𝑘]𝑥1 ∧ 𝑥2 ∧. . . . . .∧ 𝑥𝑘 = ∑  𝑘
𝑖=1 𝑥1 ∧ 𝑥2 ∧. . .∧ 𝔸𝑥𝑖 ∧. . .∧ 𝑥𝑘                (2.1)  

  • Let 𝔸 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 and for any integer 𝑖 = 1, . . . , 𝐶𝑛
𝑘, let ((𝑖)) = (𝑖1, 𝑖2, . . . . , 𝑖𝑘) be the 𝑖𝑡ℎ member in the 

lexicographic ordering of integer 𝑘-tuples such that 1 ≤ 𝑖1 < 𝑖2 <. . . . < 𝑖1 ≤ 𝑛 where 𝐶𝑛
𝑘 =

𝑛!

𝑘!(𝑛−𝑘)!
. Then  

  • The entry in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column of 𝔸[𝑘] = (�̂�𝑖𝑗)1≤𝑖,𝑗≤𝐶𝑛𝑘 is 

  �̂�𝑖,𝑗 = 

{
 
 

 
 
𝑎𝑖1,𝑖1+. . . . . 𝑎𝑖𝑘,𝑖𝑘     𝑖𝑓    ((𝑖)) = ((𝑗)); 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛                                        
    
(−1)𝑟+𝑠𝑎𝑗𝑟,𝑖𝑠     𝑖𝑓    𝑒𝑥𝑎𝑐𝑡𝑙𝑦    𝑜𝑛𝑒    𝑒𝑛𝑡𝑟𝑦    𝑜𝑓    𝑖𝑠    𝑑𝑜𝑒𝑠    𝑛𝑜𝑡                    

𝑜𝑐𝑐𝑢𝑟    𝑖𝑛    ((𝑗))    𝑎𝑛𝑑    𝑗𝑟    𝑑𝑜𝑒𝑠    𝑛𝑜𝑡    𝑜𝑐𝑐𝑢𝑟    𝑖𝑛    ((𝑖)),                    
    
0    𝑖𝑓    ((𝑖))    𝑑𝑖𝑓𝑓𝑒𝑟𝑠    𝑓𝑟𝑜𝑚    ((𝑗))    𝑖𝑛    𝑡𝑤𝑜    𝑜𝑟    𝑚𝑜𝑟𝑒    𝑒𝑛𝑡𝑟𝑖𝑒𝑠.

               (2.2) 

.               ⧫  

• Let ||. || denote a vector norm in 𝕂𝑛 and the operator norm it induces in 𝕄𝑛(𝕂).  

   ∘1 The Lozinski𝑖̆ measure 𝜇 (also known as logarithmic norm ||. ||𝑙𝑜𝑔) on 𝕄𝑛(𝕂) with respect to ||. || is defined by 

(see Coppel (1965) [23]) 

  For 𝔸 ∈ 𝕄𝑛(𝕂), 

  𝜇(𝐴): =  
ℎ⟶0+

𝐿𝑖𝑚
||𝕀+ℎ𝔸||−1

ℎ
   (2.3)  

   ∘2 By the logarithmic norm of a matrix 𝐴 we mean the real number defined by the formula : 

  ||𝐴||𝑙𝑜𝑔: =  
𝑡⟶0+

𝐿𝑖𝑚
𝑙𝑛||𝕀+ℎ𝔸||−||𝐼||

𝑡
     (2.3)bis  

  • The existence of a limit in (2.3)𝑏𝑖𝑠 is established on the basis of the convexity of the function 𝐼 + 𝑡𝐴 (see Bylov 

(1996) [24], Supplement I, Sec. 2), whence we also borrow the notation for the logarithmic norm). 
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  • The logarithmic norm of a matrix for an arbitrary norm was introduced by the Leningrad mathematician Lozinskii 

(1958) [25] and the Swedish mathematician Dahlquist (1959) [26] in their papers on the numerical integration of 

ordinary differential equations. For linear bounded operators in Banach spaces, a similar notion was introduced 

Daletskii and Krein (1970) [27], Problems and supplement to Chap. I.             ⧫ 

  • Let 𝐴 = (𝑎𝑖𝑗) be a real or complex square 𝑛 × 𝑛 matrix, and let 𝜆1, 𝜆2, . . . . , 𝜆𝑛 be the complete set of its 

eigenvalues denoted by 𝜎(𝐴) (the spectrum of the matrix 𝐴). The maximal real part of these eigenvalues is denoted by 

𝑠(𝐴) i.e. 𝑠(𝐴) = 𝑚𝑎𝑥1≤𝑖≤𝑛ℜ𝑒𝜆𝑖. (spectral abscissa). 

  The term “spectral abscissa” (by analogy with the spectral radius 𝜌(𝐴) = lim ||𝐴𝑛||
1

𝑛 as 𝑛 ⟶ +∞ of a matrix 𝐴) and 

the notation for it were proposed in Perov (2002) [28]. 

  • What the best upper and lower bounds for ||𝑒𝑡𝐴||? ,0 ≤ 𝑡 < +∞ where 𝑒𝑡𝐴 = 𝐼 + ∑  𝑛
𝑘=1

𝑡𝑘𝐴𝑘

𝑘!
. 

  It follows from the definition of 𝑒𝑡𝐴 that 𝑒−𝑡||𝐴|| ≤ ||𝑒𝑡𝐴|| ≤ 𝑒𝑡||𝐴||, 0 ≤ 𝑡 < +∞ but −||𝐴|| and ||𝐴|| are not the best 

constants. 

  Now, let 𝛼 and 𝛽 the best constants in the estimate : 

  𝑒𝑡𝛼 ≤ ||𝑒𝑡𝐴|| ≤ 𝑒𝛽𝑡 , 0 ≤ 𝑡 < +∞                (2.4) 

  the existence of such constants is beyond doubt. 

Theorem 2.3 

  (i) Let 𝛼 be the best constant in estimate (2.4) from below. Then 

  𝛼 = 𝑖𝑛𝑓0<𝑡
𝑙𝑛(||𝑒𝑡𝐴||)

𝑡
= 𝑙𝑖𝑚 

𝑙𝑛(||𝑒𝑡𝐴||)

𝑡
= 𝑚𝑎𝑥1≤𝑖≤𝑛ℜ𝑒𝜆𝑖 as 𝑡 ⟶ +∞.               (2.5) 

  (ii) Let 𝛽 be the best constant in estimate (2.4) from below. Then 

  𝛽 = 𝑠𝑢𝑝0<𝑡
𝑙𝑛(||𝑒𝑡𝐴||)

𝑡
= 𝑙𝑖𝑚  

𝑙𝑛||𝐼+𝑡𝐴||

𝑡
= 𝑙𝑖𝑚  

𝑙𝑛||𝐼+𝑡𝐴||−||𝐼||

𝑡
 as 𝑡 ⟶ 0+.               (2.6) 

Proof 

  (i) For the proof, see (Daletskii and Krein (1970) [27], Chap. I, Theorem 4.1). 

    We see from the last equality in (2.5) that 𝛼 is the spectral abscissa of the matrix 𝐴: 𝛼 = 𝑠(𝐴). Let us stress that the 

spectral abscissa is independent of the choice of the norm. 

  (ii) We see from the last equality in (2.6) that 𝛽 is the logarithmic norm of the matrix 𝐴: 𝛽 = ||𝐴||𝑙𝑜𝑔 . 

    Consider the logarithmic function on the positive semi-axis. In view of its continuous differentiability, it locally 

satisfies the Lipschitz condition. Therefore, for any 𝜖 > 0, we can indicate a 𝛿 = 𝛿𝜖 > 0such that  

  |𝑙𝑛𝑢 − 𝑙𝑛𝑣| ≤ (1 + 𝜖)|𝑢 − 𝑣| for |𝑢 − 1| < 𝛿, |𝑣 − 1| < 𝛿. 

    Therefore, under the conditions |||𝑒𝑡𝐴|| − 1| < 𝛿 and |||𝐼 + 𝑡𝐴|| − 1| < 𝛿, , we have 

  |𝑙𝑛||𝑒𝑥𝑝(𝑡𝐴)|| − 𝑙𝑛||𝐼 + 𝑡𝐴|| ≤ (1 + 𝜖)|||𝑒𝑡𝐴|| − ||𝐼 + 𝑡𝐴||| 

  ||𝑒𝑡𝐴 − (𝐼 + 𝑡𝐴|| ≤ ∑  𝑛
𝑘=2

𝑡𝑘||𝐴||𝑘

𝑘!
= 𝑒𝑡||𝐴|| − 1 − 𝑡||𝐴||. 

Therefore, 

  𝑙𝑖𝑚𝑡⟶0+  
𝑙𝑛||𝑒𝑡𝐴||

𝑡
= 𝑙𝑖𝑚𝑡⟶0+  

𝑙𝑛||𝐼+𝑡𝐴||

𝑡
,               (2.7) 

Provided that at least one of the limits in (2.7) exists. 

    Further, setting 𝜖(𝑡) = ||𝐼 + 𝑡𝐴|| − ||𝐼||, we can write  

  

{
 
 

 
 
𝑙𝑛||𝐼+𝑡𝐴||

𝑡
=

||𝐼+𝑡𝐴||−||𝐼||

𝑡
                        𝑖𝑓 𝜖(𝑡) = 0

    
𝑙𝑛||𝐼+𝑡𝐴||

𝑡
=

𝑙𝑛(1+𝜖(𝑡))

𝜖(𝑡)

||𝐼+𝑡𝐴||−||𝐼||

𝑡
    𝑖𝑓 𝜖(𝑡) ≠ 0

 

  whence, using the well-known relation 
𝑙𝑛(1+𝑥)

𝑥
⟶ 1 as 𝑥 ⟶ 0, we obtain 

  𝑙𝑖𝑚𝑡⟶0+
𝑙𝑛||𝐼+𝑡𝐴||

𝑡
= 𝑙𝑖𝑚𝑡⟶0+

||𝐼+𝑡𝐴||−||𝐼||

𝑡
                (2.8) 
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  Provided that at least one of the limits in (2.8) exists. As we have already said above, the last limit exists and serves 

to define the logarithmic norm. It remains to prove that  

  𝑠𝑢𝑝0<𝑡
𝑙𝑛||𝑒𝑡𝐴||

𝑡
= 𝑙𝑖𝑚𝑡⟶0+

𝑙𝑛||𝑒𝑡𝐴||

𝑡
                (2.9) 

   In (2.9), the quantity on the left exists, is finite and is equal to 𝛽; as proved above, the limit on the right exists, is 

finite and will be denoted by 𝑏. The definition of the number 𝛽 implies the inequality 𝛽 ≥ 𝑏. 

  Suppose for the time being that the written inequality is strict: 𝛽 > 𝑏. For a sufficiently small 𝜖 > 0, we can write 

𝛽 − 𝜖 ≥ 𝑏 + 𝜖 . From the obtained 𝜖 > 0, we then find a 𝛿 = 𝛿𝜖 such that 

  ||𝑒𝑡𝐴|| ≤ ||𝑒𝑡(𝑏+𝜖)|| for 0 < 𝑡 ≤ 𝛿. 

   After this, consider an arbitrary fixed 𝑡 > 0. Let us choose a natural number 𝑘 so that 0 <
𝑡

𝑘
≤ 𝛿. 

After this, we estimate  

  ||𝑒𝑡𝐴|| = ||𝑒𝑘
𝑡

𝑘
𝐴|| ≤ ||𝑒

𝑡

𝑘
𝐴||𝑘 ≤ 𝑒

𝑡

𝑘
(𝑏+𝜖)𝑘 = 𝑒𝑡(𝑏+𝜖) ≤ 𝑒𝑡(𝛽−𝜖) . 

  Thus,  

  ||𝑒𝑡𝐴|| ≤ 𝑒𝑡(𝛽−𝜖) for 0 < 𝑡 < +∞, 

  and this explicitly contradicts the definition of the number 𝛽. 

  This Theorem implies the important inequality: 

  𝛼 = 𝑠(𝐴)  ≤  ||𝐴||𝑙𝑜𝑔  =  𝛽. 

For every 𝐴, 𝐵 ∈ 𝑀𝑛(ℂ), 𝛼 ≥ 0 , and 𝜉 ∈ ℂ the following relations hold: 

  •1  𝜇(𝛼𝐴 + 𝜉𝐼) = 𝛼𝜇(𝐴) + ℜ𝑒𝜉. 

  •2  −||𝐴|| ≤ −𝜇(−𝐴) ≤ 𝜇(𝐴) ≤ ||𝐴||. 

  •3  𝜇(𝐴) + 𝜇(−𝐴) ≥ 0 

  •4  𝜇(𝐴 + 𝐵) ≤ 𝜇(𝐴) + 𝜇(𝐵). 

  •5  −𝜇(−𝐴) ≤ ℜ𝑒𝜆 ≤ 𝜇(𝐴) for 𝜆 ∈ 𝜎(𝐴). 

    In the partial case for the Holder vector 𝑝-norm defined by  

  ||𝑥||𝑝 = (∑  𝑛
𝑖=1 |𝑥𝑖|

𝑝)
1

𝑝 and ||𝑥||∞ = 𝑚𝑎𝑥1≤𝑖≤𝑛{|𝑥𝑖|}  

then the corresponding matrix measure can be calculated explicitly in the cases: 

 • Example 1 

 • (a) Let 𝑛 ∈ ℕ, 𝑋 = (𝑥1, . . . . , 𝑥𝑖 , . . . , 𝑥𝑛) ∈ ℝ
𝑛 with vector norm ||𝑋|| = ∑  𝑛

𝑖=1 |𝑥𝑖| and  

𝔸 = (𝑎𝑖,𝑗) ∈ 𝑀𝑛(ℝ) then 𝜇(𝔸) =       𝑗
𝑠𝑢𝑝(𝑎𝑗,𝑗 + ∑  𝑛

𝑖,𝑖≠𝑗 |𝑎𝑖,𝑗|) is Lozinski𝑖̆ norm on 𝑀𝑛(ℝ). 

  • (b) The Lozinski measures of complex matrix 𝔸 = (𝑎𝑖,𝑗) ∈ 𝑀𝑛(ℂ) with respect to the three common norms 

||𝑥||∞ = 𝑠𝑢𝑝𝑖|𝑥𝑖|, ||𝑥||1 = ∑  𝑛
𝑖=1 |𝑥𝑖| and ||𝑥||2 = √∑  𝑛𝑖 |𝑥𝑖|

2 are 

  𝜇∞(𝐴) = 𝑠𝑢𝑝𝑖(ℜ𝑒𝑎𝑖𝑖 +∑  𝑘,𝑘≠𝑖 |𝑎𝑖𝑘|, 𝜇1(𝐴) = 𝑠𝑢𝑝𝑘(ℜ𝑒𝑎𝑘𝑘 + ∑  𝑖,𝑖≠𝑘 |𝑎𝑖𝑘| and 𝜇2(𝐴) = 𝑠(
𝐴+𝐴∗

2
) respectively , where 

𝐴∗ denotes the Hermitian adjoint of 𝐴.  

  If 𝐴 is real symmetric, then 𝜇2(𝐴) = 𝑠(𝐴).  

  For a real matrix A, conditions 𝜇∞(𝐴) < 0 or 𝜇1(𝐴) < 0 can be interpreted as 𝑎𝑖𝑖 < 0  

  for 𝑖 = 1, . . . , 𝑛, and 𝐴 is diagonally dominant in rows or in columns, respectively.               ⧫ 

•  Some upper and lower bounds for the determinant of 𝒏 × 𝒏 matrix 𝑨 with positive diagonal elements 

  Let 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 be a real matrix satisfying: 

  𝑎𝑖𝑖 ≥ ∑  𝑗≠𝑖 |𝑎𝑖𝑗|,    𝑖 = 1,2, . . . , 𝑛                 (2.4) 

  Then we have the following result: 
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Theorem 2.4 

  If 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 has elements satisfying (2.4), it is possible to define 𝑙𝑖 and 𝑟𝑖, such that : 

  

{
 
 

 
 
𝑎𝑖𝑖 = 𝑙𝑖 + 𝑟𝑖     ,1 ≤ 𝑖 ≤ 𝑛
    
𝑙𝑖 ≥ ∑  𝑗<𝑖 |𝑎𝑖𝑗|    ,1 ≤ 𝑖 ≤ 𝑛
    
𝑟𝑖 ≥ ∑  𝑗>𝑖 |𝑎𝑖𝑗|    ,1 ≤ 𝑖 ≤ 𝑛

                 (2.5) 

Then, for any choice of 𝑙𝑖 and 𝑟𝑖, satisfying (2.5) we have 

  ∑  𝑛
𝑘=0 (∏  𝑘

𝑖=1 𝑙𝑖∏  𝑛
𝑖=𝑘+1 𝑟𝑖) ≤ 𝑑𝑒𝑡𝐴 ≤ ∑  𝑛

𝑘=0 (∏  𝑘−1
𝑖=1 (𝑙𝑖 + 2𝑟𝑖)𝑙𝑖∏  𝑛

𝑖=𝑘+1 𝑟𝑖)                (2.6) 

  where an empty product is defined to be 1 and 𝑑𝑒𝑡𝐴 denotes determinant of 𝐴. 

  Proof 

  To prove this result, we need the following bound given by Price (1951) [29]: 

  If (2.4) holds then 

  ∏  𝑛
𝑖=1 (𝑎𝑖𝑖 − 𝑟𝑖) ≤ 𝑑𝑒𝑡𝐴 ≤ ∏  𝑛

𝑖=1 (𝑎𝑖𝑖 + 𝑟𝑖)                 (2.7) 

  where 𝑟𝑖 = ∑  𝑗>𝑖 |𝑎𝑖𝑗|. 

  Let 𝔻𝑛 represent the determinant of 𝐴, then we proceed by induction on 𝑛: 

  (a) For 𝑛 = 2, let 𝐴 = (

𝑎11 𝑎12
    
𝑎21 𝑎22

) has elements satisfying (2.4) then 𝑟1 = |𝑎12| and 𝑟2 = 0 then by observing that : 

  •1 |𝑎12|𝑎22 ≥ |𝑎12||𝑎21| = |𝑎12𝑎21| ≥ −𝑎12𝑎21. 

  and 

  •2 |𝑎12|𝑎22 ≥ |𝑎12||𝑎21| = |𝑎12𝑎21| ≥ 𝑎12𝑎21. 

  We deduce that the Price’s theorem holds. 

  Now let 𝔻2 = |

𝑎11 𝑎12
    
𝑎21 𝑎22

| = |

𝑙1 + 𝑟1 𝑎12
    
𝑎21 𝑙2 + 𝑟2

| and expanding it by diagonal elements in the following form: 

  𝔻2 = |

𝑙1 𝑎12
    
0 𝑙2

| + |

𝑙1 0

    
0 𝑟2

| + |

𝑟1 0

    
𝑎21 𝑟2

| + |

𝑟1 𝑎12
    
𝑎21 𝑙2

|. 

  Therefore: 

  𝑙1𝑙2 + 𝑙1𝑟2 + 𝑟1𝑟2 ≤ 𝔻2 ≤ 𝑟1𝑟2 + 𝑙1𝑟2 + (𝑙1 + 2𝑟1)𝑙2, 

  Since 

  0 ≤ |

𝑟1 𝑎12
    
𝑎21 𝑙2

| ≤ (𝑟1 + 𝑎12)𝑙2 < 2𝑟1𝑙2 by  (2.5) and  (2.7) . 

  (b) Assume that for any matrix of order 𝑛 − 1 with elements satisfying (2.5),  

  ∑  𝑛−1
𝑘=0 (∏  𝑘

𝑖=1 𝑙𝑖∏  
𝑛1
𝑖=𝑘+1 𝑟𝑖) ≤ 𝔻𝑛−1 ≤ ∑  𝑛−1

𝑘=0 (∏  𝑘−1
𝑖=1 (𝑙𝑖 + 2𝑟𝑖)𝑙𝑖∏  𝑛−1

𝑖=𝑘+1 𝑟𝑖)                (2.8) 

  If 𝔻𝑛 = 𝑑𝑒𝑡𝐴, where 𝐴 = (𝑎𝑖𝑗) 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and the elements 𝑎𝑖𝑗  satisfy (2.5), partition 𝔻𝑛 as follows : 

  𝔻𝑛 = |

𝐴1 �̂�2
    
�̂�3 𝑙𝑛 + 𝑟𝑛

|. 
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Where: 

  𝐴1 = (𝑎𝑖𝑗)1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1, �̂�2 is the column vector with components 𝑎𝑖𝑛1 ≤ 𝑖 ≤ 𝑛 − 1, �̂�3 is the row vector with 

components 𝑎𝑛𝑗1 ≤ 𝑗 ≤ 𝑛 − 1, and as in (2.5) , 𝑙𝑛 + 𝑟𝑛 = 𝑎𝑛𝑛, 𝑙𝑛 ≥ ∑  𝑛−1
𝑗=1 |𝑎𝑛𝑗, 𝑟𝑛 ≥ 0. 

  Then we can write 𝔻𝑛 as the sum of two determinants, i.e., 

  𝔻𝑛 = Δ + 𝑟𝑛𝑑𝑒𝑡𝐴1                 (2.9) 

  Δ = |

𝐴1 �̂�2
    
�̂�3 𝑙𝑛

|. 

But the elements of Δ satisfy (2.4), hence, by (2.5) and (2.7) we deduce that  

  Δ ≥ ∏  𝑛
𝑖=1 (𝑎𝑖𝑖 − �̂�𝑖) ≥ ∏  𝑛

𝑖=1 (𝑎𝑖𝑖 − 𝑟𝑖) = ∏  𝑛
𝑖=1 𝑙𝑖, 

  And;                 (2.10) 

  Δ ≤ 𝑙𝑛∏  𝑛−1
𝑖=1 (𝑎𝑖𝑖 + �̂�𝑖) ≤ 𝑙𝑛∏  𝑛−1

𝑖=1 (𝑙𝑖 + 2𝑟𝑖). 

  Also, by inductive assumption, since 𝐴1, is of order 𝑛 − 1, and, by (2.5), 

  𝑟𝑖 ≥ ∑  𝑛
𝑗=𝑖+1 |𝑎𝑖𝑗| ≥ ∑  𝑛−1

𝑗=𝑖+1 |𝑎𝑖𝑗|, 

  We have , using (2.10), (2.9) and (2.8), 

  𝔻𝑛 ≥ ∏  𝑛
𝑖=1 𝑙𝑖 + 𝑟𝑛 ∑  𝑛−1

𝑘=0 (∏  𝑘
𝑖=1 𝑙𝑖∏  𝑛−1

𝑖=𝑘+1 𝑟𝑖) = ∑  𝑛
𝑘=0 (∏  𝑘

𝑖=1 𝑙𝑖∏  𝑛−1
𝑖=𝑘+1 𝑟𝑖), 

  and 

  𝔻𝑛 ≤ 𝑙𝑛∏  𝑛−1
𝑖=1 (𝑙𝑖 + 2𝑟𝑖) + 𝑟𝑛 ∑  𝑛−1

𝑘=0 (∏  𝑘−1
𝑖=1 (𝑙𝑖 + 2𝑟𝑖)𝑙𝑘∏  𝑛−1

𝑘+1 𝑟𝑖  

  = ∑  𝑛
𝑘=0 (∏  𝑘−1

𝑖=1 (𝑙𝑖 + 2𝑟𝑖)𝑙𝑘∏  𝑛
𝑖=𝑘+1 𝑟𝑖.               ⧫ 

 Remark 2.5 

  Price (1951) [29], A. Ostrowski [30-32], Brenner [33, 34] and Schneider (1953) [35] have given lower and upper 

bounds for the absolute value of determinants satisfying more general condition than (2.4).  

  However, the above theorem is not implied by any of their results.              ⧫ 

 Bounds on norms of compound matrices 

  Let 𝐴 be a matrix in 𝑀𝑛(ℂ), For subsets 𝛼 and 𝛽 of {1, . . . , 𝑛} we denote by 𝐴(𝛼|𝛽) the sub-matrix of 𝐴 whose rows 

are indexed by 𝛼 and whose columns are indexed by 𝛽 in their natural order. 

  Let 𝑘 be a positive integer, 𝑘 ≤ 𝑛. we denote by 𝐶𝑘(𝐴) the 𝑘𝑡ℎ of the matrix 𝐴, that is, the (

𝑛
    
𝑘
) × (

𝑛
    
𝑘
) matrix 

whose elements are the minors det 𝐴(𝛼|𝛽) 𝛼, 𝛽 ⊆ {1, . . . , 𝑛}, |𝛼| = |𝛽| = 𝑘. We index 𝐶𝑘(𝐴) by 𝛼 ⊆ {1, . . . , 𝑛}, 
|𝛼| = 𝑘 (ordered lexicographically). 

 •  Example 2 if 𝐴 ∈ 𝑀3(ℝ) and 𝑘 = 2 then : 

  𝐶2(𝐴) = 

(

 
 
 

𝑑𝑒𝑡𝐴({1,2}|{1,2}) 𝑑𝑒𝑡𝐴({1,2}|{1,3}) 𝑑𝑒𝑡𝐴({1,2}|{2,3})

    
𝑑𝑒𝑡𝐴({1,3}|{1,2}) 𝑑𝑒𝑡𝐴({1,3}|{1,3}) 𝑑𝑒𝑡𝐴({1,3}|{2,3})

    
𝑑𝑒𝑡𝐴({2,3}|{1,2}) 𝑑𝑒𝑡𝐴({2,3}|{1,3}) 𝑑𝑒𝑡𝐴({2,3}|{2,3})

)

 
 
 

 

 •  Example 3 if 𝐴 ∈ 𝑀4(ℝ) and 𝑘 = 3 then: 
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  𝐶3(𝐴) = 

(

 
 
 
 
 
 

𝑑𝑒𝑡𝐴(1,2,3|1,2,3)  𝑑𝑒𝑡𝐴(1,2,3|1,2,4)  𝑑𝑒𝑡𝐴(1,2,3|1,3,4)  𝑑𝑒𝑡𝐴(1,2,3|2,3,4)

    
𝑑𝑒𝑡𝐴(1,2,4|1,2,3)  𝑑𝑒𝑡𝐴(1,2,4|1,2,4)  𝑑𝑒𝑡𝐴(1,2,4|1,3,4)  𝑑𝑒𝑡𝐴(1,2,4|2,3,4)

    
𝑑𝑒𝑡𝐴(1,3,4|1,2,3)  𝑑𝑒𝑡𝐴(1,3,4|1,2,4)  𝑑𝑒𝑡𝐴(1,3,4|1,3,4)  𝑑𝑒𝑡𝐴(1,3,4|2,3,4)

    
𝑑𝑒𝑡𝐴(2,3,4|1,2,3)  𝑑𝑒𝑡𝐴(2,3,4|1,2,4)  𝑑𝑒𝑡𝐴(2,3,4|1,3,4)  𝑑𝑒𝑡𝐴(2,3,4|2,3,4)

)

 
 
 
 
 
 

  

  The most important property of the compound mapping is that it is multiplicative. 

    Lemma 2.6. ([36], Theorem 19.F.2) 

  Let 𝐴 and 𝐵 be 𝑛 × 𝑛 matrices and let 1 ≤ 𝑘 ≤ 𝑛, then 𝐶𝑘(𝐴𝐵) = 𝐶𝑘(𝐴)𝐶𝑘(𝐵).                                                         ⧫ 

  This property is equivalent to the Binet-Cauchy theorem : 

    Theorem 2.7 (Binet-Cauchy Theorem) 

  Let 𝐴 be a 𝑛 × 𝑚 complex matrix, 𝐵 be a 𝑚 × 𝑙 complex matrix and 𝑝 ≤ 𝑚𝑖𝑛{𝑛,𝑚, 𝑙} then 𝐶𝑝(𝐴𝐵) = 𝐶𝑝(𝐴)𝐶𝑝(𝐵).           

    ⧫ 

  Some other principal properties of compound matrices are given in [37- 40] for 𝐴 ∈ 𝑀𝑛(ℂ) and 𝑝 an integer, 

1 ≤ 𝑝 ≤ 𝑛: 

  in particular, let 𝐴 ∈ 𝑀𝑛(ℂ) and 𝑘 ≤ 𝑛 then we have : 

  •1 if 𝐴 is unitary, then 𝐶𝑘(𝐴) is unitary. 

  •2 if 𝐴 is diagonal, then 𝐶𝑘(𝐴) is diagonal. 

  •3 if 𝐴 is upper (lower) triangular , then 𝐶𝑘(𝐴) is upper (lower) triangular. 

  •4 𝐶𝑘(𝐴
𝑇) = 𝐶𝑘(𝐴)

𝑇. 

  •5 𝑑𝑒𝑡(𝐴 + 𝐼) = 1 + 𝑑𝑒𝑡(𝐴) + ∑  𝑛−1
𝑖=1 𝑡𝑟(𝐶𝑖(𝐴). 

  •6 if {𝜆𝑖 , 𝑖 = 1. . . . . , 𝑛} are eigenvalues of 𝐴 then the eigenvalues of 𝐴[𝑘] are of the following form : 

  {𝜆𝑖1+. . . . +𝜆𝑖𝑘 , 1 ≤ 𝑖1 <. . . . . < 𝑖𝑘 . ≤ 𝑛}. 

  •7 if {𝜆𝑖 , 𝑖 = 1. . . . . , 𝑛} are eigenvalues of 𝐴 then the eigenvalues of 𝐶𝑘(𝐴) are of the following form : 

  {𝜆𝑖1 . . . . 𝜆𝑖𝑘 , 1 ≤ 𝑖1 <. . . . . < 𝑖𝑘 . ≤ 𝑛}. 

  The main use of compound matrices are their spectral properties which follow from the previous lemma together 

with the Jordan Canonical Form. 

  The compounds of companion matrices can be used to study products of roots of polynomials.. 

Now, let 𝜈 be a vector norm on ℂ𝑛, and for a positive integer 𝑘, 𝑘 ≤ 𝑛, let 𝜇 be a norm on 𝑀𝑚(ℂ) where 𝑚 = (

𝑛
    
𝑘
) 

then we have: 

   Theorem 2.7 𝒃𝒊𝒔 (Elsner (1998) [41] Theorem 2.1) 

  𝜇(𝐶𝑘(𝐴)) ≤ 𝜃𝑘(𝜇, 𝜈)𝑚𝑎𝑥𝛼⊆{1,...,𝑛};|𝛼|=𝑘∏  𝑖∈𝛼 𝜈(𝑐𝑜𝑙𝑖(𝐴)). 

  Where: 

  𝜃𝑘(𝜇, 𝜈) = 𝑚𝑎𝑥{𝜇(𝐶𝑘(𝐵)); 𝐵 ∈ 𝑀𝑛(ℂ, 𝜈(𝑐𝑜𝑙𝑖(𝐵)) = 1, 𝑖 = 1, . . . , , }  

  with 𝑐𝑜𝑙𝑖(𝐵) denotes the 𝑖𝑡ℎ column of 𝐵.               ⧫ 

• Some criteria of stability on matrices given by Li and Wang using the compound matrix and Lozinskii 

measure 

 Lemma 2.8 (Li-Wang [2]) 

  (i) Let 𝜇 be a Lozinski𝑖̆ measure. Then 𝑠(𝔸) ≤ 𝜇(𝔸) 

  (ii) 𝑠(𝐴) = 𝑖𝑛𝑓{𝜇(𝐴); 𝜇  𝑖𝑠  𝑎  𝐿𝑜𝑧𝑖𝑛𝑠𝑘𝑖𝑖̆   𝑚𝑒𝑎𝑠𝑢𝑟𝑒  𝑜𝑛  𝕄𝑛(𝕂)} where 𝕂 = ℝ or ℂ.               ⧫ 
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 Proof 

  See Coppel (1965) [23] for (i) and Li-Wang [2], for (ii) 

 Proposition 2.9 (see Li-Wang [2]). 

  𝑠(𝔸) < 0 ⇐ 𝑠(𝔸[2]) < 0 and (−1)𝑛𝑑𝑒𝑡(𝔸) > 0.                ⧫ 

 Theorem 2.10  (see Li-Wang [2]) 

  Assume that 𝔸 ∈ 𝕄𝑛(ℝ) and (−1)𝑛𝑑𝑒𝑡(𝔸) > 0. Then 𝔸 is stable if and only if 𝜇(𝐴[2]) < 0 for some Lozinskii 

measure 𝜇 on 𝑀𝑛(𝑛−1)

2

(ℝ)                ⧫ 

 Corollary 2.11 

  Assume that 𝔸 ∈ 𝕄𝑛(ℝ) and (−1)𝑛𝑑𝑒𝑡(𝔸) > 0. Then 𝔸 is stable if the following conditions are verified: 

   • �̂�𝑗,𝑗 + ∑  
𝑛(𝑛−1)

2
𝑖=1;𝑖≠𝑗

|�̂�𝑖,𝑗| < 0, ∀    𝑗 = 1, . . . .
𝑛(𝑛−1)

2
 

  where (�̂�𝑖,𝑗)𝑖,𝑗=1,...𝑛(𝑛−1)
2

 are the entries of seconde additive compound matrix 𝐴[2].               ⧫ 

Proof 

  If we take as Lozinski𝑖̆’s measure 𝜇(𝐴[2]) = 𝑠𝑢𝑝𝑗(�̂�𝑗,𝑗 + ∑  
𝑛(𝑛−1)

2
𝑖=1;𝑖≠𝑗

|�̂�𝑖,𝑗|), ∀  𝑗 = 1, . . . .
𝑛(𝑛−1)

2
 

  then by applying the above theorem 𝜇(𝐴[2]) < 0 and 𝔸 is stable.               ⧫ 

 Definition 2.12 

  A matrix 𝐴 = (𝑎𝑖𝑗); 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is said to have dominant principal diagonal if  

  |𝑎𝑖𝑖| > ∑  𝑛
𝑘≠𝑖 |𝑎𝑖𝑘| for each 1 ≤ 𝑖 ≤ 𝑛.                (⋆) 

  Lemma 2.13 

  Let 𝐴 be a square real or complex matrix such that : 

  |𝑎𝑖𝑖| > ∑  𝑛
𝑘≠𝑖 |𝑎𝑖𝑘| for each 1 ≤ 𝑖 ≤ 𝑛.  

  Then 𝐴 is invertible and the set of its eigenvalues is included in ⋃  𝑛
𝑖=1 {𝑧 ∈ ℂ; |𝑧 − 𝑎𝑖𝑖| ≤ ∑  𝑛

𝑘≠𝑖 |𝑎𝑖𝑘|}. 

 Proof 

  Suppose that 𝐴𝑥 = 0 admit a solution 𝑥 ≠ 0 where 𝑥 = (𝑥1, 𝑥2, . . . . , 𝑥𝑛)
𝑇. Let 𝑖0 such that |𝑥𝑖0| = 𝑚𝑎𝑥1≤𝑖≤𝑛|𝑥𝑖|. 

  The 𝑖0
𝑡ℎ equation of te system 𝐴𝑥 = 0 can be written as follow : 

  ∑  𝑛
𝑘=1 𝑎𝑖0𝑘𝑥𝑘 = 0 or 𝑎𝑖0𝑖0𝑥𝑖0 = ∑  𝑛

𝑘≠𝑖0
− 𝑎𝑖0𝑘𝑥𝑘  

  But 𝑥𝑖0 ≠ 0 then 𝑎𝑖0𝑖0 = ∑  𝑛
𝑘≠𝑖0

− 𝑎𝑖0𝑘
𝑥𝑘

𝑥𝑖0
 and |𝑎𝑖0𝑖0| = ∑  𝑛

𝑘≠𝑖0
|𝑎𝑖0𝑘|

|𝑥𝑘|

|𝑥𝑖0
| ≤ ∑  𝑛

𝑘≠𝑖0
|𝑎𝑖0𝑘| which is impossible. 

  Now, let 𝑧 is an eigenvalue of 𝐴 then 𝐴 − 𝑧𝐼 is not invertible. 

  It follows that it is not dominant principal diagonal in particular there exists 𝑖 such that |𝑎𝑖𝑖 − 𝑧| ≤ ∑  𝑛
𝑘=1,𝑘≠𝑖 |𝑎𝑖𝑘| and 

𝑧 ∈ ⋃  𝑛
𝑖=1 {𝑧 ∈ ℂ; |𝑧 − 𝑎𝑖𝑖| ≤ ∑  𝑛

𝑘≠𝑖 |𝑎𝑖𝑘|}  

 Remark 2.14 

  (i) If 𝐴 is a matrix with dominant principal diagonal, then 𝜌(𝐼 − 𝐷−1𝐴) < 1 where 𝐷 is the diagonal of 𝐴 and 

𝜌(𝐼 − 𝐷−1𝐴) is the spectral radius of 𝐼 − 𝐷−1𝐴 which is defined as the maximum of the moduli |𝜆| of eigenvalues 𝜆 

of 𝐼 − 𝐷−1𝐴. 

  (ii) 𝜇(𝐴[2]) < 0 can be interpreted as �̂�𝑗,𝑗 < 0 for 𝑗 = 1, . . . ,
𝑛(𝑛−1)

2
, and 𝐴[2] is diagonally dominant in columns.        ⧫ 

• Positive Definite Matrix 

   Definition 2.15 

  An 𝑛 × 𝑛 complex matrix 𝐴 is called positive definite if 
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  ℜ𝑒[𝑥∗𝐴𝑥] > 0                 (2.4) 

  for all nonzero complex vectors 𝑥 ∈ ℂ𝑛, where 𝑥∗ denotes the conjugate transpose of the vector 𝑥. 

  In the case of a real matrix 𝐴, equation (2.4) reduces to 

  ℜ𝑒[𝑥𝑇𝐴𝑥] > 0                 (2.5) 

  Where 𝑥𝑇 denotes the transpose.                ⧫ 

  • Positive definite matrices are of both theoretical and computational importance in a wide variety of applications. 

They are used, for example, in optimization algorithms and in the construction of various linear regression models 

(Johnson 1970) [42]. 

  A positive definite matrix has at least one matrix square root. Furthermore, exactly one of its matrix square roots is 

itself positive definite. 

  A necessary and sufficient condition for a complex matrix 𝐴 to be positive definite is that the Hermitian part  

  𝐴𝐻 =
1

2
(𝐴 + 𝐴𝐻)                 (2.6) 

  where 𝐴𝐻 denotes the conjugate transpose, be positive definite. 

  This means that a real matrix 𝐴 is positive definite iff the symmetric part  

  𝐴𝑆 =
1

2
(𝐴 + 𝐴𝑇)                 (2.7) 

  where 𝐴𝑇 is the transpose, is positive definite (Johnson 1970 [42]). 

  • Confusingly, the discussion of positive definite matrices is often restricted to only Hermitian matrices, or 

symmetric matrices . 

  In the case of real matrices (Pease (1965) [43]; Johnson (1970) [42]; Marcus and Minc (1988) [44]; Marcus and Minc 

(1992) [45]; Golub and Van Loan (1996) [46]).  

  A Hermitian (or symmetric) matrix is positive definite iff all its eigenvalues are positive. Therefore, a general 

complex (respectively, real) matrix is positive definite iff its Hermitian (or symmetric) part has all positive 

eigenvalues. 

  The determinant of a positive definite matrix is always positive, so a positive definite matrix is always nonsingular.    

            ⧫ 

 Definition 2.16 

  (1) An real square matrix 𝐴 is said Z-matrix if their of diagonal elements are all non-positive. 

  (1) An real square matrix 𝐴 is said 𝑀 −matrix if it is 𝑍 −matrix and fulfilling one of the conditions of the following 

theorem of Fiedler and Ptàk [47].                ⧫ 

 Theorem 2.17 (Fiedler-Ptàk) 

  Let 𝐴 be a Z-matrix. Then the following conditions are equivalent to each other : 

  1𝑜 There exists a vector 𝑥 ≥ 0 such that 𝐴𝑥 > 0; 

  2𝑜 there exists a vector 𝑥 > 0 such that 𝐴𝑥 > 0; 

  3𝑜 there exists a diagonal matrix 𝐷 with positive diagonal elements such that 𝐴𝐷𝑒 > 0 (here 𝑒 is the vector whose all 

coordinates are 1); 

  4𝑜 there exists a diagonal matrix 𝐷 with positive diagonal elements such that the matrix 𝑊 = 𝐴𝐷 is a matrix with 

dominant positive principal diagonal;  

  5𝑜 for each diagonal matrix 𝑅 such that 𝑅 ≥ 𝐴 the inverse 𝑅−1 exists and 𝜌(𝑅−1(𝑃 − 𝐴)) < 1, where 𝑃 is the 

diagonal of 𝐴;  

  6𝑜 if 𝐵 is a Z-matrix and 𝐵 ≥ 𝐴, then 𝐵−1 exists;  

  7𝑜 each eigenvalue of 𝐴 is positive;  

  8𝑜 all principal minors of 𝐴 are positive; 

  9𝑜 there exists a strictly increasing sequence 0 ≠ 𝑀1 ⊂ 𝑀2 ⊂. . . . . . 𝑀𝑛 such that the principal minors 𝑑𝑒𝑡𝐴(𝑀𝑖) are 

positive; 

  10𝑜 there exists a permutation matrix 𝒫 such that 𝒫𝐴𝒫−1 may be written in the form 𝑅𝑆 where 𝑅 is a lower 
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triangular matrix positive diagonal elements such that 𝑅 is a Z-matrix and 𝑆 is an upper triangular matrix with positive 

diagonal elements such that 𝑆 is a Z-matrix; 

  11𝑜 the inverse 𝐴−1 exists and 𝐴−1 ≥ 0;  

  12𝑜 the real part of each eigenvalue of 𝐴 is positive; 

  13𝑜 for each vector 𝑥 ≠ 0 there exists an index 𝑘 that 𝑥𝑘𝑦𝑘 > 0 for 𝑦 = 𝐴𝑥               ⧫ 

Proof : See Fiedler-Ptàk (1962) [47]. 

Theorem 2.18 (A caracterization of M-matrices in relation to the definite positive matrices) 

  Let 𝐴 be a square matrix of order 𝑛 satisfying: 𝑎𝑖𝑖 ≥ 0; 𝑎𝑖𝑗 ≤ 0 if 𝑖 ≠ 𝑗. Then the following conditions are equivalent: 

  (i) 𝐴−1 exists and its elements are ≥ 0. 

  (ii) There exists a diagonal matrix 𝐷 with elements > 0 such that 𝐷𝐴 is definite positive matrix.               ⧫ 

Proof 

  (𝑖) ⟹ (𝑖𝑖) 

  Let 𝑒 be the vector having all its components equal to 1. We define 𝑥 and 𝑦 by 𝐴𝑥 = 𝑒 and 𝐴∗𝑦 = 𝑒. Then we have 

𝑥𝑖 > 0 and 𝑦𝑖 > 0 for all 𝑖. 

  Let 𝐵 be the matrix defined by 𝑏𝑖𝑗 = 𝑦𝑖𝑎𝑖𝑗𝑥𝑗  . Then 𝑏𝑖𝑖 − ∑  𝑗≠𝑖 |𝑏𝑖𝑗| = ∑  𝑗 𝑏𝑖𝑗𝑗 = 𝑦𝑖 > 0 and 𝑏𝑖𝑖 − ∑  𝑗≠𝑖 |𝑏𝑗𝑖| =

∑  𝑗 𝑏𝑗𝑖𝑗 = 𝑥𝑖 > 0. 

  Consequently 𝐵 and 𝐵∗ are strictly dominant diagonal matrices. Then 𝐵 + 𝐵∗ is also a strictly dominant diagonal 

matrix and it is a definite positive matrix because it is symmetric. Then there exists 𝛼 > 0 such that < 𝐵𝑢, 𝑢 >≥
𝛼||𝑢||2.  

  Now, let 𝑑𝑖 =
𝑦𝑖

𝑥𝑖
 and 𝑑𝑖 are the elements the diagonal matrix 𝐷 then we have 

  < 𝐷𝐴𝑢, 𝑢 >= ∑  𝑖𝑗 𝑑𝑖𝑎𝑖𝑗𝑢𝑖𝑢𝑗 = ∑  𝑖𝑗 𝑏𝑖𝑗
𝑢𝑖

𝑥𝑖

𝑢𝑗

𝑥𝑗
≥ 𝛼∑  𝑖 |

𝑢𝑖

𝑥𝑖
|2𝛽 ∑  𝑖 |𝑢𝑖|

2. 

  (𝑖𝑖) ⟹ (𝑖) 

  If 𝑢 ≠ 0 and 𝐴𝑢 = 𝑣 then we have ∑  𝑖 𝑑𝑖𝑢𝑖𝑣𝑖 > 0. 

  Consequently, there exists 𝑖 such that 𝑢𝑖𝑣𝑖 > 0 which entails (𝑖) by applying the property 13𝑜 of above theorem on 

the M-matrices. 

•  The Schur stability criteria of matrices using the additive compound matrix 

   Definition 2.19 (Shur stability)  

  A matrix 𝐴 is said to be Schur stable if 𝜌(𝐴) < 1, where 𝜌(𝐴) = 𝑚𝑎𝑥{|𝜆|; 𝜆 ∈ 𝜎(𝐴)} (the spectral radius of 𝐴). 

  Consider the 𝒞𝑟; 𝑟 ≥ 1 map: 

  𝑥 ⟶ 𝑔(𝑥); 𝑥 ∈ ℝ𝑛                (2.8) 

  If (2.8) has a fixed point 𝑥 = 𝑥∗, that is, 𝑥∗ = 𝑔(𝑥∗), then the linear map corresponding to ((2.8) is 

  𝑦 ⟶ 𝐴𝑦; 𝑦 ∈ ℝ𝑛                (2.9) 

  Where 𝐴 = 𝐷𝑔(𝑥∗), the Jacobian matrix of 𝑔 at 𝑥∗.                ⧫ 

Lemma 2.20 (see Liao (2002) [48] Theorem 2.1).  

  If the matrix 𝐴 of the system (2.9) is Schur stable, then the fixed point 𝑥∗ of the system (2.9) is asymptotically stable. 

that is the eigenvalues of 𝐴 have strictly negative real part.               ⧫ 

Theorem 2.21 (see Zhang and Zheng (2013) [49])  

  ⋆1 Let 𝐵 = 𝐼 +
2

𝑑𝑒𝑡(𝐴−𝐼)
(𝐴 − 𝐼)−1), if (−1)𝑛𝑑𝑒𝑡(𝐵) > 0,, then 𝐴 is Schur stable ⇐ there exists some Lozinskii 

measure 𝜇 such that 𝜇(𝐵[2]) < 0. 

  ⋆2 Let 𝐴 ∈ 𝑀𝑛(ℝ), then 𝜌(𝐴) < 1 ⇐ 𝜌(𝐶2(𝐴)) < 1 and 𝑑𝑒𝑡(𝐼 − 𝐴2) > 0. 

  ⋆3 Let 𝐴 ∈ 𝑀𝑛(ℝ), then 𝜌(𝐴) < 1 ⇐ 𝜎1𝜎2 < 1 and 𝑑𝑒𝑡(𝐼 − 𝐴2) > 0. 
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  Where {𝜎1, 𝜎2, . . . . . , 𝜎𝑛} are the singular values of 𝐴, i.e the eigenvalues of the symmetric matrix √𝐴∗𝐴 such that 

𝜎1 ≥ 𝜎2 ≥. . . . . . ≥ 𝜎𝑛 ≥ 0.                ⧫ 

  In next section we give some preliminary definitions and lemmas for linear stability of above system. 

3. Some Preliminary Definitions and Lemmas 

   • Writting the above five-dimensional system as follow: 

  𝑥′(𝑡) = 𝑓(𝑥(𝑡)) where 𝑥(𝑡) = (𝑥1, 𝑥2(𝑡), 𝑥3, 𝑥4, 𝑥5)
𝑇 = (𝐸(𝑡), 𝐼(𝑡), 𝐶(𝑡), 𝐻(𝑡), 𝐷(𝑡))𝑇 and  

  𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5)
𝑇  such that:  

  𝑓1: ℝ
5 ⟶ ℝ ; 𝑓1[𝑥(𝑡)] = 𝐵 − 𝜇𝐸(𝑡) + 𝛽9𝐻(𝑡) + (𝛽10 − 𝛽1)𝐸(𝑡)𝐼(𝑡) + 𝛽7𝐸(𝑡)𝐷(𝑡) 

  𝑓2: ℝ
5 ⟶ℝ ; 𝑓2[𝑥(𝑡)] = −(𝛽2 + 𝛽6 + 𝛽8 + 𝜇)𝐼(𝑡) + (𝛽1 − 𝛽10)𝐸(𝑡)𝐼(𝑡) 

  𝑓3: ℝ
5 ⟶ℝ ; 𝑓3[𝑥(𝑡)] = 𝛽2𝐼(𝑡) − (𝛽5 + 𝛽3 + 𝜇)𝐶(𝑡) + 𝛽4𝐻(𝑡) 

  𝑓4: ℝ
5 ⟶ℝ ; 𝑓4[𝑥(𝑡)] = 𝛽8𝐼(𝑡) + 𝛽3𝐶(𝑡) − (𝛽4 + 𝛽9 + 𝜇)𝐻 

  𝑓5: ℝ
5 ⟶ℝ ; 𝑓5[𝑥(𝑡)] = 𝛽6𝐼(𝑡) + 𝛽5𝐶(𝑡) − 𝛽7𝐷(𝑡)𝐸(𝑡) 

  where the << 𝑇>> denotes transpose. 

  •   Basic reproduction number 

  Mathematical modeling can play an important role in helping to quantify possible disease control strategies by 

focusing on the important aspects of a disease, determining threshold quantities for disease survival, and evaluating 

the effect of particular control strategies.  

  A very important threshold quantity is the basic reproduction number, sometimes called the basic reproductive 

number or basic reproductive ratio (Heffernan et al. 2005 [6]), which is usually denoted by ℛ0.  

  The epidemiological definition of ℛ0 is the average number of secondary cases produced by one infected individual 

introduced into a population of susceptible individuals, where an infected individual has acquired the disease, and 

susceptible individuals are healthy but can acquire the disease. 

In reality, the value of ℛ0 for a specific disease depends on many variables, such as location and density of population. 

  The study of the stability of jacobian matrices of order less than three of a dynamic system yields a reasonable ℛ0, 

but for more complex compartmental models, especially those with more infected compartments, the study of the 

stability is difficult as it relies on the algebraic Routh-Hurwitz conditions for stability of the Jacobian matrix. 

  An alternative method proposed by Diekmann et al. (1990) [7] and elaborated by van den Driessche and Watmough 

(2002) [8] gives a way of determining ℛ0 for a compartmental model by using the next generation matrix.  

  Here an outline of this method is given, the proofs and further details can be found in van den Driessche and 

Watmough (2002) and van den Driessche and Watmough (2008) [50]. 

  Let 𝑥 = (𝑥1, 𝑥2, . . . . , 𝑥𝑚 , . . . , 𝑥𝑛)
𝑇 be the number of individuals in each compartment, where the first 𝑚 < 𝑛 

compartments contain infected individuals. 

  Assume that the equilibrium point 𝑥∗ exists and is stable in the absence of disease, and that the linearized equations 

for 𝑥1, . . . , 𝑥𝑚 at the 𝑥∗ decouple from the other equations. The assumptions are given in more details in the references 

cited above. 

  Consider these equations written in the form: 

  
𝑑𝑥𝑖

𝑑𝑡
= 𝔉𝑖(𝑥) − 𝒱𝑖(𝑥), 1 ≤ 𝑖 ≤ 𝑚 

  In this splitting, 

  𝔉𝑖(𝑥) is the rate of appearance of new infections in compartment 𝑖,  

  and 

  𝒱𝑖(𝑥) is the rate of other transitions between compartment i and other infected compartments. 

  It is assumed that 𝔉𝑖 , 𝒱𝑖 ∈ 𝒞
2 and 𝔉𝑖 = 0,𝑚 + 1 ≤ 𝑖 ≤ 𝑛               ⧫ 

 Remark 3.1 

  Let 𝑛 = 5 and (𝑥1, 𝑥2, . . . . , 𝑥5)
𝑇 = (𝐸, 𝐼, 𝐶, 𝐻, 𝐷)𝑇 the compments of our system Covid-19 then we have : 
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  • 𝑚 = 2 

  • 

{
 
 

 
 
𝔉1(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = 𝛽7𝐸𝐷 + 𝛽10𝐸𝐼
    
𝔉2(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = 𝛽1𝐸𝐼                    
    
𝔉𝑖(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = 0; 3 ≤ 𝑖 ≤ 5        

                 (3.1) 

The Jacobian matrix associated to  (3.1) is 𝔽 =  

(

 
 
 
 
 
 
 
 
 
 

𝜕𝔉
1

𝜕𝐸

𝜕𝔉
1

𝜕𝐼

𝜕𝔉
1

𝜕𝐶

𝜕𝔉
1

𝜕𝐻

𝜕𝔉
1

𝜕𝐷

    
𝜕𝔉

2

𝜕𝐸

𝜕𝔉
2

𝜕𝐼

𝜕𝔉
2

𝜕𝐶

𝜕𝔉
2

𝜕𝐻

𝜕𝔉
2

𝜕𝐷

    
𝜕𝔉

3

𝜕𝐸

𝜕𝔉
3

𝜕𝐼

𝜕𝔉
3

𝜕𝐶

𝜕𝔉
3

𝜕𝐻

𝜕𝔉
3

𝜕𝐷

    
𝜕𝔉

4

𝜕𝐸

𝜕𝔉
4

𝜕𝐼

𝜕𝔉
4

𝜕𝐶

𝜕𝔉
4

𝜕𝐻

𝜕𝔉
4

𝜕𝐷

    
𝜕𝔉

5

𝜕𝐸

𝜕𝔉
5

𝜕𝐼

𝜕𝔉
5

𝜕𝐶

𝜕𝔉
5

𝜕𝐻

𝜕𝔉
5

𝜕𝐷

)

 
 
 
 
 
 
 
 
 
 

  

  = 

(

 
 
 
 
 
 
 

𝛽7𝐷 + 𝛽10𝐼 𝛽10𝐸 0    0 𝛽7𝐸

    
𝛽1𝐼 𝛽1𝐸 0    0 0

    
0 0 0    0 0
    
0 0 0    0 0
    
0 0 0    0 0

)

 
 
 
 
 
 
 

                 (3.2) 

  And for 𝑚 = 2 we have: 

  • 𝔽𝑚 = (

𝛽7𝐷 + 𝛽10𝐼 𝛽10𝐸

    
𝛽1𝐼 𝛽1𝐸

)                 (3.3) 

• 

{
 
 
 
 

 
 
 
 
𝒱1(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = −𝐵 + 𝛽1𝐸𝐼 − 𝛽9𝐻 + 𝜇𝐸                    
    
𝒱2(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = (𝛽2 + 𝛽6 + 𝛽8 + 𝜇)𝐼 + 𝛽10𝐸𝐼        
    
𝒱3(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = −𝛽2𝐼 + (𝛽5 + 𝛽3 + 𝜇)𝐶 − 𝛽4𝐻
    
𝒱4(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = −𝛽8𝐼 − 𝛽3𝐶 + (𝛽4 + 𝛽9 + 𝜇)𝐻
    
𝒱5(𝐸, 𝐼, 𝐶, 𝐻, 𝐷) = 𝛽6𝐼 − 𝛽5𝐶 + 𝛽7𝐷𝐸                        

                (3.4) 

The Jacobian matrix associated to  (3.3) is 𝕍 =  

(

 
 
 
 
 
 
 
 
 
 

𝜕𝒱1

𝜕𝐸

𝜕𝒱1

𝜕𝐼

𝜕𝒱1

𝜕𝐶

𝜕𝒱1

𝜕𝐻

𝜕𝒱1

𝜕𝐷

    
𝜕𝒱2

𝜕𝐸

𝜕𝒱2

𝜕𝐼

𝜕𝒱2

𝜕𝐶

𝜕𝒱2

𝜕𝐻

𝜕𝒱2

𝜕𝐷

    
𝜕𝒱3

𝜕𝐸

𝜕𝒱3

𝜕𝐼

𝜕𝒱3

𝜕𝐶

𝜕𝒱3

𝜕𝐻

𝜕𝒱3

𝜕𝐷

    
𝜕  𝒱4

𝜕𝐸

𝜕𝒱4

𝜕𝐼

𝜕𝒱4

𝜕𝐶

𝜕𝒱4

𝜕𝐻

𝜕𝒱4

𝜕𝐷

    
𝜕𝒱5

𝜕𝐸

𝜕𝒱5

𝜕𝐼

𝜕𝒱5

𝜕𝐶

𝜕𝒱5

𝜕𝐻

𝜕𝒱5

𝜕𝐷

)
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  = 

(

 
 
 
 
 
 
 
 

𝛽1𝐼 + 𝜇 𝛽1𝐸 0 −𝛽9 0

    
𝛽10𝐼 𝛽2 + 𝛽6 + 𝛽8 + 𝜇 + 𝛽10𝐸 0 0 0

    
0 −𝛽2 𝛽5 + 𝛽3 + 𝜇 −𝛽4 0

    
0 −𝛽8 −𝛽3 𝛽4 + 𝛽9 + 𝜇 0

    
𝛽7𝐷 −𝛽6 −𝛽5 0 𝛽7𝐸

)

 
 
 
 
 
 
 
 

                (3.5) 

  and for 𝑚 = 2 we have 

 • 𝒱𝑚 = (

𝛽1𝐼 + 𝜇 𝛽1𝐸

    
𝛽10𝐼 𝛽2 + 𝛽6 + 𝛽8 + 𝜇 + 𝛽10𝐸

)                                                                                                         (3.6) 

  • Important case 

  Let 𝐸 =
𝐵

𝜇
, 𝐼 = 𝐶 = 𝐻 = 𝐷 = 0 and 𝛼 = 𝛽2 + 𝛽6 + 𝛽8 + 𝜇 then we have : 

  • 𝔽𝑚 = 

(

 
 

0
𝛽10𝐵

𝜇

    

0
𝛽1𝐵

𝜇

)

 
 

, • 𝒱𝑚 = 

(

 
 

𝜇 𝛽1
𝐵

𝜇

    

0 𝛼 +
𝛽10𝐵

𝜇

)

 
 

 , • 𝒱𝑚
−1 = 

(

  
 

1

𝜇

−𝛽1𝐵

𝜇[𝛽10𝐵+𝛼𝜇]

    

0
1

𝛼+
𝛽10𝐵

𝜇

)

  
 

  and  • 𝔽𝑚𝒱𝑚
−1 = 

(

 
 

0
𝛽10𝐵

𝛼𝜇+𝛽10𝐵

    

0
𝛽1𝐵

𝛼𝜇+𝛽10𝐵

)

 
 

 

The eigenvalues of 𝔽𝑚𝒱𝑚
−1 are 𝜆0 = 0 and • ℛ0 =

𝛽1𝐵

𝛼𝜇+𝛽10𝐵
 = 𝜌(𝔽𝑚𝒱𝑚

−1) which is called effective basic 

reproduction number.  

These following figures give the curves of ℛ0-evolution with respect 𝜇 as abscissa of step Δ𝜇 = 0.015 and 

parameter 𝛽10 but the other parameters are fixed as in above table.     

           

                 (a) 𝜇 ∈ [0,0.74]; 𝛽10 = 0.1                                    (b) 𝜇 ∈ [0,043]; 𝛽10 ∈ [0.1,1]; Δ𝛽10 = 0.1 
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(c) 𝛽10 ∈ [0.1,1]; Δ𝛽10 = 0.1 

Remark 3.2 

  Let 𝐴 = (𝑎𝑖𝑗) be a 𝑛 × 𝑛 real matrix such that (𝑎𝑖𝑗) ≤ 0 for all 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then matrix 𝐴 is also an M-

matrix if it can be expressed in the form 𝐴 = 𝑠𝐼 − 𝐵, where 𝐵 = (𝑏𝑖𝑗) with 𝑏𝑖𝑗 ≥ 0, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where 𝑠 is at 

least as large as the maximum of the moduli of the eigenvalues of 𝐵, and 𝐼 is an identity matrix. 

  For the non-singularity of 𝐴, according to the Perron-Frobenius theorem, it must be the case that 𝑠 > 𝜌(𝐵). Also, for 

a non-singular M-matrix, the diagonal elements 𝑎𝑖𝑖  of 𝐴 must be positive. Here we will further characterize only the 

class of non-singular M-matrices.                ⧫ 

Definition 3.3 (Metzler matrix) 

  In mathematics, especially linear algebra, a matrix is called Metzler, quasipositive (or quasi-positive) or essentially 

nonnegative if all of its elements are non-negative except for those on the main diagonal, which are unconstrained. 

That is, a Metzler matrix is any matrix A which satisfies 𝐴 = (𝑎𝑖𝑗);     𝑎𝑖𝑗 ≥ 0,    𝑖 ≠ 𝑗.               ⧫ 

  𝑀-matrices are very useful. We can found some of their applications to ecology, numerical analysis, probability, 

mathematical programming, game theory, control theory, and matrix theory.               ⧫ 

• Some fondamental properties of M-matrices  

  An M-matrix 𝐴 ∈ 𝑀𝑛(ℝ) is a matrix of the form 𝐴 = 𝛼𝐼 − 𝐵, where 𝐵 ≥ 0 (𝐵 is elementwise nonnegative) and 

𝛼 ≥ 𝜌(𝐵). (By the Perron-Frobenius theorem e.g., Intissar (2019) [51], 𝜌(𝐵), the spectral radius of 𝐵, is an eigenvalue 

of 𝐵.) 

  If 𝐴 = 𝛼𝐼 − 𝐵, where 𝐼 is the identity matrix, 𝐵 is non-negative and 𝛼 > 𝜌(𝐵), then 𝐴 is a non-singular M-matrix; if 

𝛼 = 𝜌(𝐵), then 𝐴 is a singular M-matrix. 

There are many definitions of M-matrices equivalent to the above. For example, if a matrix 𝐴 has the 𝒵 sign pattern 

and 𝜌(𝐴) > 0, then 𝐴 is a non-singular M-matrix [5]. 

  A matrix of the form 𝛼𝐼 − 𝐵, 𝐵 ≥ 0 is called a 𝑍 −matrix. 

  • Observe that a 𝑍 −matrix 𝐴 is an 𝑀 −matrix if and only if 𝐴 + 𝜖𝑙 is nonsingular for all 𝜖 > 0. 

  We said that a matrix 𝐴 = (𝑎𝑖𝑗) of order 𝑛 has the 𝒵 sign pattern if 𝑎𝑖𝑗 ≤ 0 for all 𝑖 ≠ 𝑗. 

  If a matrix 𝐴 has the 𝒵 sign pattern and 𝜌(𝐴) > 0, then 𝐴 is a non-singular M-matrix [52]. 

  From Exercise 6𝑏 of Horn and Johnson (1991) [53] and Berman and Plemmons (1979) [52], we get the following 

lemma : 

Lemma 3.4 

  Let 𝐴 be a non-singular M-matrix and suppose 𝐵 and 𝐵𝐴−1 have the 𝒵 sign pattern.Then 𝐵 is a non-singular M-

matrix if and only if 𝐵𝐴−1 is a non-singular M-matrix.               ⧫ 

  In general, this lemma does not hold if 𝐵 a singular M-matrix. It can be shown to hold if 𝐵 is singular and 

irreducible. However, this is not sufficient for our needs in part II of this work. we shall need of the following lemma : 

 Lemma 3.5 

  Let 𝐴 be a non-singular M-matrix and suppose 𝐵 ≥ 0.Then, 

  (i) (𝐴 − 𝐵) is a non-singular M-matrix if and only 𝐴 − 𝐵)𝐴−1 is a non-singular M-matrix. 
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 (ii)(𝐴 − 𝐵) is a non-singular M-matrix if and only 𝐴 − 𝐵)𝐴−1 is a non-singular M-matrix. 

Proof 

  Let 𝐶 = 𝐴 − 𝐵). Then both 𝐶 and 𝐶𝐴−1 = 𝐼 − 𝐵𝐴−1 have the 𝒵 sign pattern. (Recall that 𝐴−1 ≥ 0 since 𝐴 is a non-

singular M-matrix). 

  Hence, the above lemma implies statement (i). A separate continuity argument can be constructed for each 

implication in the singular case. 

  The following theorem collects conditions that characterize nonsingular 𝑀 −matrices. 

Theorem 3.6 

  Let 𝐴 = 𝛼𝑙 − 𝐵, 𝐵 ≥ 0. Then the following statements are equivalent: 

  a. 𝛼 > 𝜌(𝐵), 

  b. 𝐴 is positive stable: If 𝜆 is an eigenvalue of 𝐴, then ℜ𝑒𝜆 > 0, 

  c. 𝐴 is nonsingular and 𝐴−1 ≥ 0, 

  d. 𝐴𝑥 is positive for some positive vector 𝑥, 

  e. The principal minors of 𝐴 are positive, 

  f. The leading principal minors of 𝐴 are positive.  

Proof 

  Conditions (b), (c), and (e) are due to Ostrowski [30], who introduced the concept of 𝑀 −matrices. Condition (e) is 

known in the economics literature as the Hawkins-Simon condition [54]. 

  Condition (d) is due to Schneider (1953) [35] and Ky-Fan (1958) [55] and the condition (f) to Fiedler and Ptak 

(1962) [47].  

  Many additional characterizations of nonsingular (and of singular) M-matrices are given in Berman and Plemmons 

(1979) [52]. 

  A subset of the set of all M-matrices that contains the nonsingular M-matrices and whose matrices share many of 

their properties is the set of group-invertible M-matrices (M-matrices with "property c").  

  Basic reproduction number ℛ0 for the model can be established using the next generation matrix method [56] and 

[7]. 

Definition 3.7 

  The basic reproduction number ℛ0 is obtained as the spectral radius of matrix 𝔽𝕍−1 at disease free equilibrium point. 

Where 𝔽 and 𝕍 are constructed as below: 

  𝔽 = (
𝜕𝔉𝑖(𝑥

∗)

𝜕𝑥𝑗
)𝑖𝑗 and 𝕍 = (

𝜕𝒱𝑖(𝑥
∗)

𝜕𝑥𝑗
)𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. 

For our system the graph of ℛ0 with respect 
1

𝜇
 is : 

 

Basic reproduction number of infections ℛ0 as a function of 
1

𝜇
. All other parameters are fixed. 
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   From the above functions (𝑓𝑖),1 ≤ 𝑖 ≤ 5 of our system, we consider the associated functions (𝑓𝑖),1 ≤ 𝑖 ≤ 5 where 

we delete the linear elements and the negative nonlinear elements, i.e : 

  𝑓1[𝑥(𝑡)] ⟶ 𝑓1[𝑥(𝑡)] = 𝛽10𝐸(𝑡)𝐼(𝑡) + 𝛽7𝐸(𝑡)𝐷(𝑡) 

  𝑓2[𝑥(𝑡)] ⟶ 𝑓2[𝑥(𝑡)] = 𝛽1𝐸(𝑡)𝐼(𝑡) 

  𝑓3[𝑥(𝑡)] ⟶ 𝑓3[𝑥(𝑡)] = 0 

  𝑓4[𝑥(𝑡)] ⟶ 𝑓4[𝑥(𝑡)] = 0 

  𝑓5[𝑥(𝑡)] ⟶ 𝑓5[𝑥(𝑡)] = 0 

  And the associated functions (�̂�𝑖),1 ≤ 𝑖 ≤ 5 where we delete the non negative nonlinear elements and we take the 

opposite of the obtained expression , i.e : 

  𝑓1[𝑥(𝑡)] ⟶ �̂�1[𝑥(𝑡)] = −𝐵 + 𝜇𝐸(𝑡) − 𝛽9𝐻(𝑡) + 𝛽1𝐸(𝑡)𝐼(𝑡) 

  𝑓2[𝑥(𝑡)] ⟶ �̂�2[𝑥(𝑡)] = +(𝛽2 + 𝛽6 + 𝛽8 + 𝜇)𝐼(𝑡) + 𝛽10𝐸(𝑡)𝐼(𝑡) 

  𝑓3[𝑥(𝑡)] ⟶ �̂�3[𝑥(𝑡)] = −𝛽2𝐼(𝑡) + (𝛽5 + 𝛽3 + 𝜇)𝐶(𝑡) − 𝛽4𝐻(𝑡) 

  𝑓4[𝑥(𝑡)] ⟶ �̂�4[𝑥(𝑡)] = −𝛽8𝐼(𝑡) − 𝛽3𝐶(𝑡) + (𝛽4 + 𝛽9 + 𝜇)𝐻 

  𝑓5[𝑥(𝑡)] ⟶ �̂�5[𝑥(𝑡)] = −𝛽6𝐼(𝑡) − 𝛽5𝐶(𝑡) + 𝛽7𝐷(𝑡)𝐸(𝑡) 

  We define the matrices 𝔽 and 𝕍 as follow : 

  𝔽 =  

(

 
 
 
 
 
 
 
 
 
 
 
 

𝜕�̂�
1

𝜕𝑥1

𝜕�̂�
1

𝜕𝑥2

𝜕�̂�
1

𝜕𝑥3

𝜕�̂�
1

𝜕𝑥4

𝜕�̂�
1

𝜕𝑥5

    
𝜕�̂�

2

𝜕𝑥1

𝜕�̂�
2

𝜕𝑥2

𝜕�̂�
2

𝜕𝑥3

𝜕�̂�
2

𝜕𝑥4

𝜕�̂�
2

𝜕𝑥5

    
𝜕�̂�

3

𝜕𝑥1

𝜕�̂�
3

𝜕𝑥2

𝜕�̂�
3

𝜕𝑥3

𝜕�̂�
3

𝜕𝑥4

𝜕�̂�
3

𝜕𝑥5

    
𝜕�̂�

4

𝜕𝑥1

𝜕�̂�
4

𝜕𝑥2

𝜕�̂�
4

𝜕𝑥3

𝜕�̂�
4

𝜕𝑥4

𝜕�̂�
4

𝜕𝑥5

    
𝜕�̂�

5

𝜕𝑥1

𝜕�̂�
5

𝜕𝑥2

𝜕�̂�
5

𝜕𝑥3

𝜕�̂�
5

𝜕𝑥4

𝜕�̂�
5

𝜕𝑥5

    

)

 
 
 
 
 
 
 
 
 
 
 
 

 and 𝕍 = 

(

 
 
 
 
 
 
 
 
 
 
 
 

𝜕�̂�
1

𝜕𝑥1

𝜕�̂�
1

𝜕𝑥2

𝜕�̂�
1

𝜕𝑥3

𝜕�̂�
1

𝜕𝑥4

𝜕�̂�
1

𝜕𝑥5

    
𝜕�̂�

2

𝜕𝑥1

𝜕�̂�
2

𝜕𝑥2

𝜕�̂�
2

𝜕𝑥3

𝜕�̂�
2

𝜕𝑥4

𝜕�̂�
2

𝜕𝑥5

    
𝜕�̂�

3

𝜕𝑥1

𝜕�̂�
3

𝜕𝑥2

𝜕�̂�
3

𝜕𝑥3

𝜕�̂�
3

𝜕𝑥4

𝜕�̂�
3

𝜕𝑥5

    
𝜕�̂�

4

𝜕𝑥1

𝜕�̂�
4

𝜕𝑥2

𝜕�̂�
4

𝜕𝑥3

𝜕�̂�
4

𝜕𝑥4

𝜕�̂�
4

𝜕𝑥5

    
𝜕�̂�

5

𝜕𝑥1

𝜕�̂�
5

𝜕𝑥2

𝜕�̂�
5

𝜕𝑥3

𝜕�̂�
5

𝜕𝑥4

𝜕�̂�
5

𝜕𝑥5

    

)

 
 
 
 
 
 
 
 
 
 
 
 

 

Remark 3.8 

  (i) The explicit matrix 𝔽 is : 

  𝔽 =  

(

 
 
 
 
 
 
 
 
 
 
 
 

𝜕�̂�
1

𝜕𝑥1

𝜕�̂�
1

𝜕𝑥2

𝜕�̂�
1

𝜕𝑥3

𝜕�̂�
1

𝜕𝑥4

𝜕�̂�
1

𝜕𝑥5

    
𝜕�̂�

2

𝜕𝑥1

𝜕�̂�
2

𝜕𝑥2

𝜕�̂�
2

𝜕𝑥3

𝜕�̂�
2

𝜕𝑥4

𝜕�̂�
2

𝜕𝑥5

    
𝜕�̂�

3

𝜕𝑥1

𝜕�̂�
3

𝜕𝑥2

𝜕�̂�
3

𝜕𝑥3

𝜕�̂�
3

𝜕𝑥4

𝜕�̂�
3

𝜕𝑥5

    
𝜕�̂�

4

𝜕𝑥1

𝜕�̂�
4

𝜕𝑥2

𝜕�̂�
4

𝜕𝑥3

𝜕�̂�
4

𝜕𝑥4

𝜕�̂�
4

𝜕𝑥5

    
𝜕�̂�

5

𝜕𝑥1

𝜕�̂�
5

𝜕𝑥2

𝜕�̂�
5

𝜕𝑥3

𝜕�̂�
5

𝜕𝑥4

𝜕�̂�
5

𝜕𝑥5

    

)

 
 
 
 
 
 
 
 
 
 
 
 

  = 

(

 
 
 
 
 
 
 
 

𝛽7𝐷 + 𝛽10𝐼 𝛽10𝐸 0 0 𝛽7𝐸

    
𝛽1𝐼 𝛽1𝐸 0 0 0

    
0 0 0 0 0
    
0 0 0 0 0
    
0 0 0 0 0
    

)

 
 
 
 
 
 
 
 

 

    (ii) The explicit matrix 𝕍 is : 
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  𝕍 = 

(

 
 
 
 
 
 
 
 
 
 
 
 

𝜕�̂�
1

𝜕𝑥1

𝜕�̂�
1

𝜕𝑥2

𝜕�̂�
1

𝜕𝑥3

𝜕�̂�
1

𝜕𝑥4

𝜕�̂�
1

𝜕𝑥5

    
𝜕�̂�

2

𝜕𝑥1

𝜕�̂�
2

𝜕𝑥2

𝜕�̂�
2

𝜕𝑥3

𝜕�̂�
2

𝜕𝑥4

𝜕�̂�
2

𝜕𝑥5

    
𝜕�̂�

3

𝜕𝑥1

𝜕�̂�
3

𝜕𝑥2

𝜕�̂�
3

𝜕𝑥3

𝜕�̂�
3

𝜕𝑥4

𝜕�̂�
3

𝜕𝑥5

    
𝜕�̂�

4

𝜕𝑥1

𝜕�̂�
4

𝜕𝑥2

𝜕�̂�
4

𝜕𝑥3

𝜕�̂�
4

𝜕𝑥4

𝜕�̂�
4

𝜕𝑥5

    
𝜕�̂�

5

𝜕𝑥1

𝜕�̂�
5

𝜕𝑥2

𝜕�̂�
5

𝜕𝑥3

𝜕�̂�
5

𝜕𝑥4

𝜕�̂�
5

𝜕𝑥5

    

)

 
 
 
 
 
 
 
 
 
 
 
 

 

 = 

(

 
 
 
 
 
 
 
 
 

𝛽1𝐼 + 𝜇 𝛽1𝐸 0 −𝛽9 0

    
𝛽10𝐼 𝛽10𝐸 + 𝛽8 + 𝛽6 + 𝛽2 + 𝜇 0 0 0

    
0 −𝛽2 𝛽3 + 𝛽5 + 𝜇 −𝛽4 0

    
0 −𝛽8 −𝛽3 𝛽9 + 𝛽4 + 𝜇 0

    
𝛽7𝐷 −𝛽6 −𝛽5 0 𝛽7𝐸

)

 
 
 
 
 
 
 
 
 

 

Lemma 3.9 

  (i) 𝑑𝑒𝑡𝕍 = 𝛽7𝐸[(𝛽1𝐼 + 𝜇)𝛼(𝛽𝛾 − 𝛽3𝛽4) − 𝛽10𝐼𝛽1𝐸(𝛽𝛾 − 𝛽3𝛽4) + 𝛽10𝐼𝛽9(𝛽2𝛽3 + 𝛽𝛽8)] 

  where  

  𝛼 = 𝛽10𝐸 + 𝛽8 + 𝛽6 + 𝛽2 + 𝜇 

 𝛽 = 𝛽3 + 𝛽5 + 𝜇 

  𝛾 = 𝛽9 + 𝛽4 + 𝜇 

  (ii) 𝕍−1 =
1

𝑑𝑒𝑡𝕍
(−1)𝑖+𝑗𝕄𝑇  

  where 𝕄𝑇  is the transpose of matrix of minor (𝑀𝑖𝑗) of 𝕍   1 ≤ 𝑖, 𝑗 ≤ 5  

  As the form of the matrix 𝔽 is simple 𝔽 = 

(

 
 
 
 
 
 
 
 

𝛽7𝐷 + 𝛽10𝐼 𝛽10𝐸 0 0 𝛽7𝐸

    
𝛽1𝐼 𝛽1𝐸 0 0 0

    
0 0 0 0 0
    
0 0 0 0 0
    
0 0 0 0 0
    

)

 
 
 
 
 
 
 
 

 then the matrix 𝔽𝕍−1 has the 

Following form: 

    𝔽𝕍−1 =
1

𝑑𝑒𝑡𝕍
(−1)𝑖+𝑗 (

𝐴 𝐵
𝐶 𝐷

) where 𝐴 is 2 × 2 matrix , 𝐵 is 2 × 3 matrix , 𝐶 = 0 is 3 × 2 matrix and 𝐷 = 0 is 

3 × 3 matrix.                ⧫ 

Lemma 3.10 
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  𝔽𝕍−1 =
1

𝑑𝑒𝑡𝕍
(−1)𝑖+𝑗

(

 
 
 
 
 
 
 
 

(𝛽7𝐷 + 𝛽10𝐼)𝑀11 + 𝛽10𝐸𝑀12 (𝛽7𝐷 + 𝛽10𝐼)𝑀21 + 𝛽10𝐸𝑀22 ∗ ∗ ∗

    
𝛽1𝐼𝑀11 + 𝛽1𝐸𝑀12 𝛽1𝐼𝑀21 + 𝛽1𝐸𝑀22 ∗ ∗ ∗

    
0 0 0 0 0
    
0 0 0 0 0
    
0 0 0 0 0
    

)

 
 
 
 
 
 
 
 

 

  Where: 

  𝑀11  = 𝛼𝛽7𝐸(𝛽𝛾 − 𝛽3𝛽4) 

  𝑀12 = 𝛽1𝐸(𝛽𝛾 − 𝛽3𝛽4) − 𝛽9(𝛽2𝛽3) + 𝛽𝛽8) 

  𝑀21 = 𝛽1𝐸(𝛽𝛾 − 𝛽3𝛽4) − 𝛽9(𝛽2𝛽3) + 𝛽𝛽8) 

  and 

  𝑀22 = 𝛽7𝐸(𝛽1 + 𝜇)(𝛽𝛾 − 𝛽3𝛽4)                ⧫ 

  In order to simplify the notations and avoid lengthy expressions, we define the parameters: 

  𝑎 =
1

𝑑𝑒𝑡𝕍
[(𝛽7𝐷 + 𝛽10𝐼)𝑀11 + 𝛽10𝐸𝑀12] ,  

  𝑏 =
−1

𝑑𝑒𝑡𝕍
[(𝛽7𝐷 + 𝛽10𝐼)𝑀21 + 𝛽10𝐸𝑀22], 

  𝑐 =
−1

𝑑𝑒𝑡𝕍
[𝛽1𝐼𝑀11 + 𝛽1𝐸𝑀12], 

  And; 

  𝑑 =
1

𝑑𝑒𝑡𝕍
[𝛽1𝐼𝑀21 + 𝛽1𝐸𝑀22]  

  then the eigenvalues of 𝔽𝕍−1 are 𝜆𝑖; 1 ≤ 𝑖 ≤ 5 where 𝜆1 and 𝜆2 are the zeros of  

  (𝑎 − 𝜆)(𝑑 − 𝜆) − 𝑏𝑐 = 𝜆2 − (𝑎 + 𝑑)𝜆 + (𝑎𝑑 − 𝑏𝑐) = 0  

  And; 

  𝜆3 = 𝜆4 = 𝜆5 = 0. 

  Consequently : 

Lemma 3.11 

  ℛ0 = 
𝑎+𝑑+√Δ

2
 where Δ = (𝑎 + 𝑑)2 − 4(𝑎𝑑 − 𝑏𝑐)                ⧫ 

  In next section, we apply the corollary 2.11 to stability of Covid-19 system. 

4. Determination of Equilibrium Points 

Theorem 4.1 

  If the control reproduction number ℛ0 is is less than 1, model (covid-19) has a unique equilibrium: the disease-free 

equilibrium (DFE) 𝑃0 = (
𝐵

𝜇
, 0,0,0,0). 

  Conversely, if ℛ0 > 1 , model (covid-19) has two equilibria: the DFE and a unique endemic equilibrium 𝑃∗ =

(𝐸∗, 𝐼∗, 𝐶∗, 𝐻∗, 𝐷∗) = (𝐸∗, �̂�𝐻∗, �̂�𝐻∗, 𝐻∗, 𝛾𝐻∗) where 𝐻∗ =
𝐵−𝜇𝐸∗

[(𝛽1−𝛽10)�̂�−𝛽7�̂�]𝐸
∗−𝛽9

 and 𝐸∗ =
𝜇+𝛽2+𝛽6+𝛽8

𝛽1−𝛽10
=

𝛼

𝛽1−𝛽10
 

  with 

  𝛼 = 𝛽2 + 𝛽6 + 𝛽8 + 𝜇; 

  �̂� =
𝛽3𝛽4+(𝛽4+𝛽3+𝜇)(𝛽5+𝛽3+𝜇)

𝛽2𝛽3+𝛽8(𝛽5+𝛽3+𝜇)
; 
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  �̂� =
𝛽8𝛽4+𝛽2(𝛽4+𝛽9+𝜇)

𝛽2𝛽3+𝛽8(𝛽5+𝛽3+𝜇)
;  

  and 

  𝛾 =
𝛽6

𝛽7𝐸
∗ �̂� +

𝛽5

𝛽7𝐸
∗ �̂�.                ⧫ 

 Proof 

{
 
 
 
 

 
 
 
 
0 = 𝐵 − 𝛽1𝐸𝐼 + 𝛽7𝐸𝐷 + 𝛽9𝐻 + 𝛽10𝐸𝐼 − 𝜇𝐸        (1)
    
0 = 𝛽1𝐸𝐼 − 𝛽2𝐼 − 𝛽6𝐼 − 𝛽8𝐼 − 𝛽10𝐸𝐼 − 𝜇𝐼           (2)
    
0 = 𝛽2𝐼 − 𝛽5𝐶 − 𝛽3𝐶 + 𝛽4𝐻 − 𝜇𝐶                          (3)
    
0 = 𝛽3𝐶 − 𝛽4𝐻 + 𝛽8𝐼 − 𝛽9𝐻 − 𝜇𝐻                         (4)
    
0 = 𝛽5𝐶 + 𝛽6𝐼 − 𝛽7𝐷𝐸                                               (5)

               (Equilibrium points) 

  (i) We observe that 𝑃0 = (
𝐵

𝜇
, 0,0,0,0) is an equilibrium point which is called disease free equilibrium point. 

  (ii) A second equilibrium point 𝑃∗ is given by 𝑃∗ = (𝐸∗, 𝐼∗, 𝐶∗, 𝐻∗, 𝐷∗) = (𝐸∗, �̂�𝐻∗, �̂�𝐻∗, 𝐻∗, 𝛾𝐻∗) 

  where 𝐻∗ =
𝐵−𝜇𝐸∗

[(𝛽1−𝛽10)�̂�−𝛽7�̂�]𝐸
∗−𝛽9

 and 𝐸∗ =
𝜇+𝛽2+𝛽6+𝛽8

𝛽1−𝛽10
 which is called Endemic equilibrium point. 

  In fact, If 𝐼 ≠ 0 then from equation (2), we deduce that 𝐸∗ =
𝜇+𝛽2+𝛽6+𝛽8

𝛽1−𝛽10
. 

  Writing the equations (3) and (4) in the following form  

  {

𝛽2𝐼 − (𝛽5 + 𝛽3 + 𝜇)𝐶 = −𝛽4𝐻                        (3)𝑏𝑖𝑠
    
𝛽8𝐼 + 𝛽3𝐶 = (𝛽4 + 𝛽9 + 𝜇)𝐻                            (4)𝑏𝑖𝑠

 

  to deduce that  

  𝐼 =
[𝛽3𝛽4+(𝛽4+𝛽3+𝜇)(𝛽5+𝛽3+𝜇)]𝐻

𝛽2𝛽3+𝛽8(𝛽5+𝛽3+𝜇)
 = �̂�𝐻 , 

  where �̂� =
𝛽3𝛽4+(𝛽4+𝛽3+𝜇)(𝛽5+𝛽3+𝜇)

𝛽2𝛽3+𝛽8(𝛽5+𝛽3+𝜇)
 

  and 

  𝐶 =
[𝛽8𝛽4+𝛽2(𝛽4+𝛽9+𝜇)]𝐻

𝛽2𝛽3+𝛽8(𝛽5+𝛽3+𝜇)
 = �̂�𝐻 

  where �̂� =
𝛽8𝛽4+𝛽2(𝛽4+𝛽9+𝜇)

𝛽2𝛽3+𝛽8(𝛽5+𝛽3+𝜇)
  

  it follows from equation (5) that 𝐷 =
𝛽6

𝛽7𝐸
𝐼 +

𝛽5

𝛽7𝐸
𝐶 = [

𝛽6

𝛽7𝐸
�̂� +

𝛽5

𝛽7𝐸
�̂�]𝐻 = 𝛾𝐻 

  where 𝛾 =
𝛽6

𝛽7𝐸
�̂� +

𝛽5

𝛽7𝐸
�̂�. 

  and from equation (1), we deduce that 𝐻 =
𝐵−𝜇𝐸

[(𝛽1−𝛽10)�̂�−𝛽7�̂�]𝐸−𝛽9
. 

  Then we get 𝑃∗ = (𝐸∗, 𝐼∗, 𝐶∗, 𝐻∗, 𝐷∗) = (𝐸∗, �̂�𝐻∗, �̂�𝐻∗, 𝐻∗, 𝛾𝐻∗)  

  where 𝐻∗ =
𝐵−𝜇𝐸∗

[(𝛽1−𝛽10)�̂�−𝛽7�̂�]𝐸
∗−𝛽9

 

  and 

  𝐸∗ =
𝜇+𝛽2+𝛽6+𝛽8

𝛽1−𝛽10
 which is called Endemic equilibrium point. 

Corollary 4.2 

  If the parameters (𝛽1, 𝛽2, . . . . . , 𝛽10) satisfy one of the following conditions : 

  (i) 𝛽1 < 𝛽10; 
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  (ii) (𝛽2 + 𝛽6 + 𝛽8 + 𝜇)�̂� < 𝛽5�̂� + 𝛽9. 

  Then the model (covid-19) has a unique equilibrium:  

  The disease-free equilibrium (DFE) 𝑃0 = (
𝐵

𝜇
, 0,0,0,0).               ⧫ 

Definition 4.3 

  The equilibrium 𝑃∗ = (𝐸∗, 𝐼∗, 𝐶∗, 𝐻∗, 𝐷∗) is called feasible if its components are positive.               ⧫ 

  Thanks to van den Driessche and Watmough (2002) [8], the following result is straightforward. 

Theorem 4.4 

  If ℛ0 < 1, the DFE is locally asymptotically stable. If ℛ0 > 1, the DFE is unstable.               ⧫ 

  The epidemiological interpretation of Theorem 4.4 is that, (covid-19) can be eliminated in the population when 

ℛ0 < 1 if the initial conditions of the dynamical system (covid-19) are in the basin of attraction of the DFE 𝑃0. 

  The theorem 4.4 shows also that, ℛ0 is a threshold which can determine if the disease will be spread or not. Thus, 

reducing its value, is a means to mitigate or even eliminate the (covid-19) . It can be therefore important to determine 

among model parameters those who mostly influence its value. 

  Now let 𝑒(𝑡) = 𝐸(𝑡) − 𝐸∗, 𝑖(𝑡) = 𝐼(𝑡) − 𝐼∗, 𝑐(𝑡) = 𝐶(𝑡) − 𝐶∗, ℎ(𝑡) = 𝐻(𝑡) − 𝐻∗ and 𝑑(𝑡) = 𝐷(𝑡) − 𝐷∗ then it is 

easy to verify that 𝑒, 𝑖, 𝑐, ℎ and 𝑑 satisfy the following system of differential equations: 

   

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑒(𝑡)

𝑑𝑡
= [(𝛽

10
− 𝛽

1
)𝐼
∗
+ 𝛽

7
𝐷
∗
− 𝜇]𝑒(𝑡) + (𝛽

10
− 𝛽

1
)𝐸

∗
𝑖(𝑡) + 𝛽

7
𝐸
∗
𝑑(𝑡) + 𝛽

9
ℎ(𝑡) + (𝛽

10
− 𝛽

1
)𝑒(𝑡)𝑖(𝑡) + 𝛽

7
𝑒(𝑡)𝑑(𝑡)

    
𝑑𝑖(𝑡)

𝑑𝑡
= [(𝛽

1
− 𝛽

10
)𝐼
∗
+ 𝛽

7
𝐷
∗
− 𝜇]𝑒(𝑡) + [(𝛽

1
− 𝛽

10
)𝐸

∗
− (𝛽

2
+ 𝛽

6
+ 𝛽

8
+ 𝜇)]𝑖(𝑡) + (𝛽

1
− 𝛽

10
)𝑒(𝑡)𝑖(𝑡)                        

    

    
𝑑𝑐(𝑡)

𝑑𝑡
= 𝛽

2
𝑖(𝑡) − (𝛽

2
+ 𝛽

5
+ 𝜇𝑐(𝑡) + 𝛽

4
ℎ(𝑡)                                                                                                                        

    
𝑑ℎ(𝑡)

𝑑𝑡
= 𝛽

8
𝑖(𝑡) + 𝛽

3
𝑐(𝑡) + (𝛽

8
− 𝛽

4
− 𝛽

9
− 𝜇ℎ(𝑡)                                                                                                                    

    
𝑑𝑑(𝑡)

𝑑𝑡
= −𝛽

7
𝐷
∗
𝑒(𝑡) + 𝛽

6
𝑖(𝑡) + 𝛽

5
𝑐(𝑡) − 𝛽

7
𝐸
∗
𝑑(𝑡) − 𝛽

7
𝑒(𝑡)𝑑(𝑡)                                                                                                

  (4.1) 

  with subject to the restriction 𝑒 + 𝑖 + 𝑐 + ℎ + 𝑑 ≤
𝐵

𝜇
− [𝐸∗ + (1 + 𝛼 + 𝛽 + 𝛾)𝐻∗]. 

  the point 𝑝∗ = (𝑒∗, 𝑖∗, 𝑐∗, ℎ∗, 𝑑∗) = (0,0,0,0) is an equilibrium point of the system (4.1). 

  The jacobian matrix of the system (4.1) is given by: 

  𝕁𝑝∗ = 

(

 
 
 
 
 
 
 
 

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15
    
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25
    
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35
    
𝑎41 𝑎42 𝑎43 𝑎44 𝑎45
    
𝑎51 𝑎52 𝑎53 𝑎54 𝑎55

)

 
 
 
 
 
 
 
 

 

  where 

  • 𝑎11 = (𝛽10 − 𝛽1)𝐼
∗ + 𝛽7𝐷

∗ − 𝜇 , 𝑎12 = (𝛽10 − 𝛽1)𝐸
∗ , 𝑎13 = 0 , 𝑎14 = 𝛽9 , 𝑎15 = 𝛽7𝐸

∗ 

  • 𝑎21 = (𝛽1 − 𝛽10)𝐼
∗ + 𝛽7𝐷

∗ − 𝜇 , 𝑎22 = (𝛽1 − 𝛽10)𝐸
∗ − (𝛽2 + 𝛽6 + 𝛽8 + 𝜇) , 𝑎23 = 0 , 𝑎24 = 0 , 𝑎25 = 0 

  • 𝑎31 = 0 ,𝑎32 = 𝛽2 , 𝑎33 = −(𝛽2 + 𝛽5 + 𝜇) , 𝑎34 = 𝛽4 , 𝑎35 = 0 

  • 𝑎41 = 0 ,𝑎42 = 𝛽8 , 𝑎43 = 𝛽3 , 𝑎44 = 𝛽8 − 𝛽4 − 𝛽9 − 𝜇 , 𝑎45 = 0 

  • 𝑎51 = −𝛽7𝐷
∗ , 𝑎52 = 𝛽6, 𝑎53 = 𝛽5 , 𝑎54 = 0, 𝑎55 = −𝛽7𝐸

∗ 
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  i.e. 𝕁𝑝∗ = 

(

 
 
 
 
 
 
 
 

𝑎11 𝑎12 0 𝑎14 𝑎15
    
𝑎21 𝑎22 0 0 0

    
0 𝑎32 𝑎33 𝑎34 0

    
0 𝑎42 𝑎43 𝑎44 0

    
𝑎51 𝑎52 𝑎53 0 𝑎55

)

 
 
 
 
 
 
 
 

 

  In particular we deduce that 

  𝕁𝑝0 = 

(

 
 
 
 
 
 
 
 

−𝜇 (𝛽10 − 𝛽1)𝐸 0 𝛽9 𝛽7𝐸

    
−𝜇 (𝛽1 − 𝛽10)𝐸 − (𝛽2 + 𝛽6 + 𝛽8 + 𝜇) 0 0 0

    
0 𝛽2 −(𝛽2 + 𝛽5 + 𝜇) 𝛽4 0

    
0 𝛽8 𝛽3 𝛽8 − 𝛽4 − 𝛽9 − 𝜇 0

    
0 0 0 0 −𝛽7𝐸

)

 
 
 
 
 
 
 
 

 

  where 𝐸 =
𝐵

𝜇
 

  Now we recall some technic calculations of determinant of a matrix in the following form : 

Lemma 4.5 

  let 𝐴 = 

(

 
 
 
 
 
 

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
    
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
    
𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4
    
𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4

)

 
 
 
 
 
 

 then we have 

𝑑𝑒𝑡 

(

 
 
 
 
 
 

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
    
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
    
𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4
    
𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4

)

 
 
 
 
 
 

 = det (

𝑎1,1 𝑎1,2
    
𝑎2,1 𝑎2,2

) det (

𝑎3,3 𝑎3,4
    
𝑎4,3 𝑎4,4

) - det (

𝑎1,1 𝑎1,2
    
𝑎3,1 𝑎3,2

) det (

𝑎2,3 𝑎2,4
    
𝑎4,3 𝑎4,4

) +               

det (

𝑎1,1 𝑎1,2
    
𝑎4,1 𝑎4,2

) det (

𝑎2,3 𝑎2,4
    
𝑎3,3 𝑎3,4

) + det (

𝑎2,1 𝑎2,2
    
𝑎3,1 𝑎3,2

) det (

𝑎1,3 𝑎1,4
    
𝑎4,3 𝑎4,4

) - det (

𝑎2,1 𝑎2,2
    
𝑎4,1 𝑎4,2

) det (

𝑎1,3 𝑎1,4
    
𝑎3,3 𝑎3,4

) +             

det  (

𝑎3,1 𝑎3,2
    
𝑎4,1 𝑎4,2

)  det  (

𝑎1,3 𝑎1,4
    
𝑎2,3 𝑎2,4

) 

  i.e. 

|

𝑎11
𝑎21
𝑎31
𝑎41

 𝑎12
 𝑎22
 𝑎32
 𝑎42

 𝑎13
 𝑎23
 𝑎33
 𝑎43

 𝑎14
 𝑎24
 𝑎34
 𝑎14

| = |
𝑎11  𝑎12
𝑎21  𝑎22

| |
𝑎33 𝑎34
𝑎43  𝑎44

| − |
𝑎11  𝑎12
𝑎31  𝑎32

| |
𝑎23 𝑎24
𝑎43  𝑎44

| + |
𝑎11  𝑎12
𝑎41  𝑎42

| |
𝑎23 𝑎24
𝑎33  𝑎34

|

+ |
𝑎21  𝑎22
𝑎31  𝑎32

| |
𝑎13 𝑎14
𝑎43  𝑎44

| − |
𝑎21  𝑎22
𝑎41  𝑎42

| |
𝑎13 𝑎14
𝑎33  𝑎34

| + |
𝑎31  𝑎32
𝑎41  𝑎42

| |
𝑎13 𝑎14
𝑎23  𝑎24

| 
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  In particular we have: 

  𝑑𝑒𝑡 

(

 
 
 
 
 
 

𝑎1,1 𝑎1,2 0 𝑎1,4
    
𝑎2,1 𝑎2,2 0 0

    
0 𝑎3,2 𝑎3,3 0

    
0 𝑎4,2 𝑎4,3 𝑎4,4

)

 
 
 
 
 
 

 =  

det (

𝑎1,1 𝑎1,2
    
𝑎2,1 𝑎2,2

)det (

𝑎3,3 0

    
𝑎4,3 𝑎4,4

) - det (

𝑎1,1 𝑎1,2
    
0 𝑎3,2

)det (

0 0
    
𝑎4,3 𝑎4,4

) + det (

𝑎1,1 𝑎1,2
    
0 𝑎4,2

)det (

0 0
    
𝑎3,3 0

) +            

det  (

𝑎2,1 𝑎2,2
    
0 𝑎3,2

)det (

0 𝑎1,4
    
𝑎4,3 𝑎4,4

) − det (

𝑎2,1 𝑎2,2
    
0 𝑎4,2

)det (

0 𝑎1,4
    
𝑎3,3 0

) + det (

0 𝑎3,2
    
0 𝑎4,2

)det (

0 𝑎1,4
    
0 0

) 

   = 𝑎11𝑎22𝑎33𝑎44 + 𝑎21𝑎42𝑎14𝑎33 − (𝑎21𝑎12𝑎33𝑎44 + 𝑎21𝑎32𝑎14𝑎43)               ⧫ 

Corollary 4.6  

  Let 𝕁𝑝0 = 

(

 
 
 
 
 
 
 
 

−𝜇 (𝛽10 − 𝛽1)𝐸
∗ 0 𝛽9 𝛽7𝐸

∗

    
−𝜇 (𝛽1 − 𝛽10)𝐸

∗ − (𝛽2 + 𝛽6 + 𝛽8 + 𝜇) 0 0 0

    
0 𝛽2 −(𝛽2 + 𝛽5 + 𝜇) 𝛽4 0

    
0 𝛽8 𝛽3 𝛽8 − 𝛽4 − 𝛽9 − 𝜇 0

    
0 0 0 0 −𝛽7𝐸

∗

)

 
 
 
 
 
 
 
 

 

  where 𝐸∗ =
𝐵

𝜇
 

  Then we have 

  (i) 𝑑𝑒𝑡𝕁𝑝0 = −𝛽7𝐸
∗𝑑𝑒𝑡 

(

 
 
 
 
 
 

−𝜇 (𝛽10 − 𝛽1)𝐸
∗ 0 𝛽9

    
−𝜇 (𝛽1 − 𝛽10)𝐸

∗ − (𝛽2 + 𝛽6 + 𝛽8 + 𝜇) 0 0

    
0 𝛽2 −(𝛽2 + 𝛽5 + 𝜇) 𝛽4
    
0 𝛽8 𝛽3 𝛽8 − 𝛽4 − 𝛽9 − 𝜇

)

 
 
 
 
 
 

 

  = −𝜇𝛽7𝐸
∗{𝛽(𝛽8 − 𝛾)(𝑎𝐸

∗ − 𝛼) + 𝛽𝛽8𝛽9 + 𝛽(𝛽8𝑎𝐸
∗ − 𝛾) + 𝛽2𝛽3𝛽9}  

  = −𝜇𝛽7𝛽𝐸
∗(2𝛽8𝑎𝐸

∗ + 𝛼𝛾 + 𝛽8𝛽9 − 𝛽8𝛼). 

  Where 𝑎 = 𝛽1 − 𝛽10 , 𝛼 = 𝛽2 + 𝛽6 + 𝛽8 + 𝜇, 𝛽 = 𝛽2 + 𝛽5 + 𝜇 and 𝛾 = 𝛽4 + 𝛽9 + 𝜇  

  (ii) Let 𝛽10 < 𝛽1 and 2𝛽8𝑎𝐸
∗ + 𝛼𝛾 + 𝛽8𝛽9 > 𝛽8𝛼 then 𝑑𝑒𝑡𝕁𝑝0 < 0.               ⧫ 

  (iii) Under the conditions of (ii) we observe that a assymption of Li-Wang criterion is satisfied. 

  Now, if 𝛽10 < 𝛽1, we write 𝕁𝑝0 in the following form  

  𝕁𝑝0 = 𝕄− 𝔼 where  



SciMedicine Journal           Vol. 2, Special Issue "COVID-19" 

58 

 

  𝕄 = 

(

 
 
 
 
 
 
 
 

0 0 0 𝛽9 𝛽7𝐸
∗

    
0 (𝛽1 − 𝛽10)𝐸

∗ 0 0 0

    
0 𝛽2 0 𝛽4 0

    
0 𝛽8 𝛽3 𝛽8 0

    
0 0 0 0 0

)

 
 
 
 
 
 
 
 

 and 𝔼 = 

(

 
 
 
 
 
 
 
 

𝜇 (𝛽1 − 𝛽10)𝐸
∗ 0 0 0

    
𝜇 𝛼 0 0 0

    
0 0 𝛽 0 0

    
0 0 0 𝛾 0

    
0 0 0 0 𝛽7𝐸

∗

)

 
 
 
 
 
 
 
 

  

  Then if 𝐸∗ ≠
𝛼

𝛽1−𝛽10
 we deduce that: 

𝔼−1 = 

(

 
 
 
 
 
 
 
 
 
 

𝛼

𝜇(𝛼−𝑟𝑒𝑑𝑎
)

−𝑎

𝜇(𝛼−𝑎)
0 0 0

    
−1

𝛼−𝑎

1

𝛼−𝑎
0 0 0

    

0 0
1

𝛽
0 0

    

0 0 0
1

𝛾
0

    

0 0 0 0
1

𝛽7𝐸
∗

)

 
 
 
 
 
 
 
 
 
 

  

  where 𝑎 = (𝛽1 − 𝛽10)𝐸
∗ 

  and 

  𝕄𝔼−1 = 

(

 
 
 
 
 

0 0 0
𝛽9

𝛾
1

𝑎𝑢 𝑎𝑣 0 0 0

𝛽2𝑢 𝛽2𝑣 0
𝛽4

𝛾
0

𝛽8𝑢 𝛽8𝑣
𝛽3

𝛽

𝛽8

𝛾
0

0 0 0 0 0
)

 
 
 
 
 

 where 𝑢 =
−1

𝛼−𝑎
 and 𝑣 =

1

𝛼−𝑎
 

  and 

  𝜒(𝜆):= 𝑑𝑒𝑡(𝕄𝔼−1𝜆𝐼) = 

|

|

|

−𝜆 0 0
𝛽9

𝛾
1

𝑎𝑢 𝑎𝑣 − 𝜆 0 0 0

𝛽2𝑢 𝛽2𝑣 −𝜆
𝛽4

𝛾
0

𝛽8𝑢 𝛽8𝑣
𝛽3

𝛽

𝛽8

𝛾
− 𝜆 0

0 0 0 0 −𝜆
|

|

|

 = −𝜆 

|

|

−𝜆 0 0
𝛽9

𝛾

𝑎𝑢 𝑎𝑣 − 𝜆 0 0

𝛽2𝑢 𝛽2𝑣 −𝜆
𝛽4

𝛾

𝛽8𝑢 𝛽8𝑣
𝛽3

𝛽

𝛽8

𝛾
− 𝜆|

|

 

= 𝜆2 
|
|

𝑎𝑣 − 𝜆 0 0

𝛽2𝑣 −𝜆
𝛽4

𝛾

𝛽8𝑣
𝛽3

𝛽

𝛽8

𝛾
− 𝜆|

|
 +

𝛽9

𝛾
𝜆 |
|

𝑎𝑢 𝑎𝑣 − 𝜆 0
𝛽2𝑢 𝛽2𝑣 −𝜆

𝛽8𝑢 𝛽8𝑣
𝛽3

𝛽
|
| 

  = 𝜆2(𝑎𝑣 − 𝜆) ||

−𝜆
𝛽4

𝛾

𝛽3

𝛽

𝛽8

𝛾
− 𝜆|

| +
𝛽9

𝛾
𝜆𝑎𝑢 |

𝛽2𝑣 −𝜆

𝛽8𝑣
𝛽3

𝛽
| −

𝛽9

𝛾
𝜆(𝑎𝑣 − 𝜆) |

𝛽2𝑢 −𝜆

𝛽8𝑢
𝛽3

𝛽
| 

  = −𝜆2(𝑎𝑣 − 𝜆)[𝜆(
𝛽8

𝛾
− 𝜆) +

𝛽3𝛽4

𝛽𝛾
]+ 

𝛽9

𝛾
𝜆𝑎𝑢𝑣(

𝛽2𝛽3

𝛽
+ 𝛽8𝜆) - 

𝛽9

𝛾
𝜆(𝑎𝑣 − 𝜆)𝑢(

𝛽2𝛽3

𝛽
+ 𝛽8𝜆) 
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  = −𝜆2(𝑎𝑣 − 𝜆)(−𝜆2 +
𝛽8

𝛾
𝜆 +

𝛽3𝛽4

𝛽𝛾
) + 

𝛽9𝛽8

𝛾
𝑎𝑢𝑣𝜆2 +

𝛽9𝛽8

𝛾
𝑢𝜆2. 

  = −𝜆2(−𝑎𝑣𝜆2 +
𝛽8

𝛾
𝑎𝑣𝜆 +

𝛽3𝛽4

𝛽𝛾
𝑎𝑣 + 𝜆3 −

𝛽8

𝛾
𝜆2 −

𝛽3𝛽4

𝛽𝛾
𝜆) +

𝛽9𝛽8

𝛾
𝑎𝑢𝑣𝜆2 +

𝛽9𝛽8

𝛾
𝑢𝜆2  

  = −𝜆2[𝜆3 + (
𝛽9𝛽8

𝛾
𝑢(𝑎𝑣 + 1) − 𝑎𝑣 −

𝛽8

𝛾
)𝜆2 + (

𝛽8

𝛾
𝑎𝑣 −

𝛽3𝛽4

𝛽𝛾
)𝜆 +

𝛽3𝛽4

𝛽𝛾
𝑎𝑣]. 

  Setting 𝑎1 =
𝛽9𝛽8

𝛾
𝑢(𝑎𝑣 + 1) − 𝑎𝑣 −

𝛽8

𝛾
, 𝑎2 =

𝛽8

𝛾
𝑎𝑣 −

𝛽3𝛽4

𝛽𝛾
 , 𝑎3 =

𝛽3𝛽4

𝛽𝛾
𝑎𝑣, 

  and 

  𝜒(𝜆) = 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3. If 𝜆1, 𝜆1 and 𝜆3 are the zeros of 𝜒(𝜆) = 0  

  Then we have 

  • 𝜆1 + 𝜆2 + 𝜆3 = −𝑎1 

  • 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3 = 𝑎2 

  • 𝜆1𝜆2𝜆3 = −𝑎3. 

  and 

Proposition 4.7  

  Let 𝜒(𝜆) = 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3, so that 𝜒 is uniformly asymptotically stable (uas), it is necessary that it suffices 

that Δ1 = 𝑎1 > 0, Δ2 = 𝑎1𝑎2 − 𝑎3 > 0 and Δ3 = 𝑎3Δ2 > 0. 

  A necessary condition for all the roots of the characteristic polynomial to admit a negative real part, all the 

coefficients must be positive, that is to say: 𝑎1 > 0, 𝑎2 > 0, . . . , 𝑎3 > 0.  

  • As 
𝑎1=𝛽9𝛽8

𝛾
𝑢(𝑎𝑣 + 1) − 𝑎𝑣 −

𝛽8

𝛾
≤ 0 then we can not apply this above proposition for 𝜒(𝜆). 

  Now, if we consider the discriminant of 𝜒 which is given by : 

  Δ𝜒 = 𝑎1
2𝑎2

2 + 18𝑎1𝑎2𝑎3 − 27𝑎3
2 − 4𝑎2

3 − 4𝑎1
3𝑎3. 

  we observe that : 

  •1 If Δ𝜒 > 0, 3 different real roots of the equation 𝜒(𝜆) = 0. 

  •2 If Δ𝜒 = 0, one double or triple root of the equation 𝜒(𝜆) = 0. 

  •3 If Δ𝜒 < 0, one real root and two complex roots of the equation 𝜒(𝜆) = 0. 

  •4 if Δ𝜒 > 0, then a necessary and sufficient condition for an equilibrium point to be  

  locally asymptotically stable is 𝑎1 > 0, 𝑎3 > 0, 𝑎1𝑎2 − 𝑎3 > 0. 

  •5 if Δ𝜒 < 0, 𝑎1 < 0, 𝑎2 < 0, then all roots of 𝜒(𝜆) = 0 satisfy the condition |𝑎𝑟𝑔(𝜆)| <
𝜋

2
. 

  •6 if Δ𝜒 > 0, 𝑎1 > 0, 𝑎2 > 0, 𝑎1𝑎2 − 𝑎3 = 0, then an equilibrium point is locally asymptotically stable. 

  •7 A necessary condition for an equilibrium point to be locally asymptotically stable is 𝑎3 > 0. 

  •8 if the conditions Δ𝜒 < 0, 𝑎1 > 0, 𝑎2 > 0, 𝑎1𝑎2 − 𝑎3 = 0 are satisfied, then an equilibrium point is not locally 

asymptotically stable. 

  We remark that •4, •6 and •4 are not satisfy by the coefficients of 𝜒(𝜆). So we have to solve the cubic equation 

𝜒(𝜆) = 0 by the Cardan’s method which is ingenious and effective, but quite non-intuitive.  

Theorem 4.8 (solutions of cubic equation) 

  Let 𝑃 the general cubic equation:  

  𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0; 𝑎 ≠ 0                                                                                                                                 ⋆  

  Then 𝑃 has solutions:  

  𝑥1 = 𝑆 + 𝑇 −
𝑏

3𝑎
                 ⋆1 

  𝑥2 = −
𝑆+𝑇

2
−

𝑏

3𝑎
+ 𝑖√3(𝑆 − 𝑇)                 ⋆2 
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  𝑥3 = −
𝑆+𝑇

2
−

𝑏

3𝑎
− 𝑖√3(𝑆 − 𝑇)                 ⋆3 

  where 

  𝑆 = √𝑅 +√𝑅2 + 𝑄3
3 

 

  𝑇 = √𝑅 − √𝑅2 + 𝑄3
3 

 

  and  

  𝑄 =
3𝑐−𝑏2

9𝑎2
 

  𝑅 =
9𝑎𝑏𝑐−27𝑎2𝑑−2𝑏3

54𝑎3
 

  The expression Δ = 𝑄3 + 𝑅2 is called the discriminant of the equation 

  See for example Nickalls (1993) [57] for a brief description of Cardan’s method. 

   •  Substantial technical difficulties for explicit expression of 𝕁𝑝∗
[2]

 

  In Appendix of Li-Wang [2], we found that for 𝑛 = 2,3, and 4, an explicit expression of second additive compound 

matrices 𝐴[2] of 𝑛 × 𝑛 matrices 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 which are given respectively by: 

  • 𝑛 = 2: 𝐴[2] = 𝑎11 + 𝑎22 = 𝑡𝑟(𝐴) 

  • 𝑛 = 3: 𝐴[2] = 

(

 
 
 

𝑎11 + 𝑎22 𝑎23 −𝑎13
    
𝑎32 𝑎11 + 𝑎33 𝑎12
    
−𝑎31 𝑎21 𝑎22 + 𝑎33

)

 
 
 

 

In the same way that the section 5 of Li-Wang [2] where they have studied the stability of an epidemic model of 

SEIR type, we apply their criterion to the following epidemic model: 

  

{
  
 

  
 
𝑑𝑆

𝑑𝑡
= Λ − (𝛽1𝐼1 + 𝛽2𝐼2)𝑆 − 𝜇𝑆        

    
𝑑𝐼1

𝑑𝑡
= (𝛽1𝐼1 + 𝛽2𝐼2)𝑆 − (𝜇 + 𝛾)𝐼1

    
𝑑𝐼2

𝑑𝑡
= 𝛾𝐼1 − (𝜇 + 𝑑)𝐼2                        

                (* 𝟏)  

  where (Λ, 𝛽1, (𝛽2, 𝜇, 𝛾, 𝑑) are given parameters. 

  • Determination of equilibrium points of the system (* 𝟏) and calculation of basic reproduction number ℛ0  

  Let 𝐸 = (𝑆, 𝐼1, 𝐼2) then the Jacobian matrix of above system is : 

  𝕁𝐸 = 

(

 
 
 

−(𝛽1𝐼1 + 𝛽2𝐼2 + 𝜇) −𝛽1𝑆 −𝛽2𝑆

    
𝛽1𝐼1 + 𝛽2𝐼2 𝛽1𝑆 − 𝜇 − 𝛾 𝛽2𝑆

    
0 𝛾 −𝜇 − 𝑑

)

 
 
 

               (* 𝟐) 

 

  Now, we consider the following equations: 

  

{
  
 

  
 
𝑑𝑆

𝑑𝑡
= Λ − (𝛽1𝐼1 + 𝛽2𝐼2)𝑆 − 𝜇𝑆 = 0          (1)

    
𝑑𝐼1

𝑑𝑡
= (𝛽1𝐼1 + 𝛽2𝐼2)𝑆 − (𝜇 + 𝛾)𝐼1 = 0     (2)

    
𝑑𝐼2

𝑑𝑡
= 𝛾𝐼1 − (𝜇 + 𝑑)𝐼2 = 0                          (3)

                (* 𝟑)  
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  then we observe that 𝐸0 = (
Λ

𝜇
, 0,0) is a trivial equilibrium point of (* 𝟑) (Disease free equilibrium point) and so  

  𝕁𝐸0 = 

(

 
 
 
 
 

−𝜇 −
𝛽1Λ

𝜇
−
𝛽2Λ

𝜇

    

0
𝛽1Λ

𝜇
− 𝜇 − 𝛾

𝛽2Λ

𝜇

    
0 𝛾 −𝜇 − 𝑑

)

 
 
 
 
 

               (* 𝟒) 

 

By using the next generation matrix method, the basic reproduction number ℛ0 is obtained as the spectral radius of 

matrix (−𝔽𝕍−1) at disease free equilibrium point where 𝔽 and 𝕍 are as below : 

  𝔽 = 

(

 
 

𝛽1Λ

𝜇

𝛽2Λ

𝜇

    
0 0

)

 
 

 , 𝕍 = (

−𝜇 − 𝛾 0

    
𝛾 −𝜇 − 𝑑

) , 𝕍−1 = 

(

 
 

−
1

𝜇+𝛾
0

    

−
𝛾

(𝜇+𝑑)(𝜇+𝛾)
−

1

𝜇+𝑑

)

 
 

 

  and −𝔽𝕍−1 = Λ 

(

 
 

𝛽1(𝜇+𝑑)+𝛽2𝛾

𝜇(𝜇+𝑑)(𝜇+𝛾)

𝛽2

𝜇(𝜇+𝑑)

    
0 0

)

 
 

 

  It follows that : 

  ℛ0 = Λ 
𝛽1(𝜇+𝑑)+𝛽2𝛾

𝜇(𝜇+𝑑)(𝜇+𝛾)
                (* 𝟓) 

 Evolution of ℛ0 with respect 𝜇  

  

where 𝛽1 = 0,3, 𝛽2 = 0,8, 𝛾 = 0,1 , Λ = 0,7 and 𝑑 = 0,04 

 

  𝕁
𝐸0
[2]
= 

(

 
 
 
 
 

𝛽1Λ

𝜇
− 2𝜇 − 𝛾

𝛽2Λ

𝜇

𝛽2Λ

𝜇

    

𝛾 −2𝜇 − 𝑑 −
𝛽1Λ

𝜇

    
0 0 −2𝜇 − 𝛾 − 𝑑

)

 
 
 
 
 

               (* 𝟔) 

  Now let 𝐼1 ≠ 0 then from (3) we deduce that : 

  𝐼2 = 𝛿𝐼1; 𝛿 =
𝛾

𝜇+𝑑
                (* 𝟕) 

  From (* 𝟕) and (2) we deduce that : 
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  𝑆 =
𝜇+𝛾

𝛽1+𝛽2𝛿
                (* 𝟖) 

  Now from (1) + (2), we deduce that : 

  𝐼1 =
Λ−𝜇𝑆

𝜇+𝑑
=

Λ(𝛽1+𝛽2𝛿)−𝜇(𝜇+𝛾)

𝛽1+𝛽2𝛿)(𝜇+𝑑)
                (* 𝟖) 

  Let 𝐸∗ = (𝑆∗, 𝐼1
∗, 𝐼2

∗) where 𝑆∗ =
𝜇+𝛾

𝛽1+𝛽2𝛿
, 𝐼1
∗ =

Λ−𝜇𝑆∗

𝜇+𝑑
 and 𝐼2

∗ = 𝛿𝐼1
∗ where 𝛿 =

𝛾

𝜇+𝑑
. 

  then 

  • The Jacobian matrix at the endemic equilibrium point 𝐸∗ = (𝑆∗, 𝐼1
∗, 𝐼2

∗) of the system (*)  is: 

  𝐽𝐸∗ = 

(

 
 
 

−𝛽1𝐼1
∗ − 𝛽2𝐼2

∗ − 𝜇 −𝛽1𝑆
∗ −𝛽2𝑆

∗

    
𝛽1𝐼1

∗ + 𝛽2𝐼2
∗ 𝛽1𝑆

∗ − 𝛾 − 𝜇 𝛽2𝑆
∗

    
0 𝛾 −𝑑 − 𝜇

)

 
 
 

 

  and 

  • the second additive compound matrix associated to 𝐽𝐸∗  is: 

  𝐽𝐸∗
[2]
= 

(

 
 
 

−𝛽1𝐼1
∗ − 𝛽2𝐼2

∗ + 𝛽1𝑆
∗ − 𝛾 − 2𝜇 𝛽2𝑆

∗ 𝛽2𝑆
∗

    
𝛾 −𝛽1𝐼1

∗ − 𝛽2𝐼2
∗ − 2𝜇 − 𝑑 −𝛽1𝑆

∗

    
0 𝛽1𝐼1

∗ + 𝛽2𝐼2
∗ 𝛽1𝑆

∗ − 𝑑 − 𝛾 − 2𝜇
)

 
 
 

 

Proposition 4.9 

  Let 

   •1 𝛽2 <
𝛾

𝛿2
 

   •2 
(𝜇+𝛾)(𝜇+𝑑)(𝛽1+𝛽2𝛿)

Λ(𝛽1+𝛽2𝛿)−𝜇(𝜇+𝛾)
+

𝛽1(𝜇+𝛾)

𝛽1+𝛽2𝛿
< 𝑑 + 𝛾 + 2𝜇 

   •3 𝛽2𝛿Λ + 𝜇(𝛾 + 𝜇) < 𝛽1Λ. 

  then the endemic equilibrium point of (*) is asymptotically stable. 

Proof 

  Let ℙ = 

(

 
 
 

𝐼2
∗ 0 0

    
0 𝐼1

∗ 0

    
0 0 𝑆∗

)

 
 
 

 

  then the matrix 𝐽𝐸∗
[2]

 is similar to matrix 𝔸 = ℙ𝐽𝐸∗
[2]
ℙ−1 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤3 which is given by : 

  𝔸 = 

(

 
 
 
 
 
 

−𝛽1𝐼1
∗ − 𝛽2𝐼2

∗ + 𝛽1𝑆
∗ − 𝛾 − 2𝜇    𝛽2𝑆

∗ 𝐼2
∗

𝐼1
∗                  𝛽2𝑆

∗ 𝐼2
∗

𝑆∗

    

𝛾
𝐼1
∗

𝐼2
∗ −𝛽1𝐼1

∗ − 𝛽2𝐼2
∗ − 2𝜇 − 𝑑               −𝛽1𝑆

∗ 𝐼1
∗

𝑆∗

    

0 (𝛽1𝐼1
∗ + 𝛽2𝐼2

∗)
𝑆∗

𝐼1
∗ 𝛽1𝑆

∗ − 𝑑 − 𝛾 − 2𝜇

)

 
 
 
 
 
 

 

Under the conditions •1 and •2 , we observe that the diagonal elements of 𝔸 are negative and;  

  (1) 𝑎11 + |𝑎12| + |𝑎13| < 0 
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  (2) 𝑎22 + |𝑎21| + |𝑎23| < 0 

  (1) 𝑎33 + |𝑎32| < 0 

  i.e 𝔸 is diagonally dominant in rows. 

  In order to apply the corollary of the Li-Wang criterion, it remains to calculate the determinant of 𝐽𝐸∗   

𝑑𝑒𝑡𝐽𝐸∗ = 
|

|

−𝛽1𝐼1
∗ − 𝛽2𝐼2

∗ − 𝜇 −𝛽1𝑆
∗ −𝛽2𝑆

∗

    
𝛽1𝐼1

∗ + 𝛽2𝐼2
∗ 𝛽1𝑆

∗ − 𝛾 − 𝜇 𝛽2𝑆
∗

    
0 𝛾 −𝑑 − 𝜇

|

|
 

  Under condition •3 we deduce that 𝑑𝑒𝑡𝐽𝐸∗ < 0 

  • 𝑛 = 4: 𝐴[2] = 

(

 
 
 
 
 
 
 
 

𝑎11 + 𝑎22 𝑎23 𝑎24 −𝑎13 −𝑎14 0

    
𝑎32 𝑎11 + 𝑎33 𝑎34 𝑎12 0 −𝑎14    
𝑎42 𝑎43 𝑎11 + 𝑎44 0 𝑎12 𝑎13
    
−𝑎13 𝑎21 0 𝑎22 + 𝑎33 𝑎34 −𝑎24
    
−𝑎41 0 𝑎21 𝑎43 𝑎22 + 𝑎44 𝑎23
    0 −𝑎41 𝑎31 −𝑎42 𝑎32 𝑎33 + 𝑎44

)

 
 
 
 
 
 
 
 

 

  In next lemma, we give the explicit entries of second additive compound matrix of 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗) where 

𝑛 = 5 

Lemma 4.10 

  For 𝑛 = 5, an explicit expression of second additive compound matrix 𝐴[2] is given by:  

 

   • As 𝑎13 = 0, 𝑎23 = 0, 𝑎24 = 0, 𝑎25 = 0, 𝑎31 = 0, 𝑎35 = 0, 𝑎41 = 0, 𝑎45 = 0 and 𝑎54 = 0 in 𝕁𝑝∗
[2]

 , we deduce that 

the explicit expression of second additive compound matrix 𝕁𝑝∗
[2]

 where 𝑃∗ = (
𝐵

𝜇
, 0,0,0,0) is :  
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  𝕁𝑝∗
[2]
= 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎11 + 𝑎22 0 0 0 0 −𝑎14 −𝑎15 0 0 0

    

𝑎32 𝑎11 + 𝑎33 𝑎34 𝑎35 𝑎12 0 0 −𝑎14 −𝑎15 0

    

𝑎42 𝑎43 𝑎11 + 𝑎44 𝑎45 0 𝑎12 0 0 0 −𝑎15

    

𝑎52 𝑎53 0 𝑎11 + 𝑎55 0 0 𝑎12 0 0 𝑎14

    

0 𝑎21 0 0 𝑎22 + 𝑎33 𝑎34 𝑎35 0 −𝑎25 0

    

0 0 𝑎21 0 𝑎43 𝑎22 + 𝑎44 𝑟𝑒𝑑0 𝑟𝑒𝑑0 0 0

    

−𝑎51 0 0 𝑎21 𝑎53 𝑟𝑒𝑑0 𝑎22 + 𝑎55 0 0 0

    

0 −𝑎41 0 0 −𝑎42 𝑎32 0 𝑎33 + 𝑎44 0 0

    

0 −𝑎51 0 0 −𝑎52 0 𝑎32 𝑎54 𝑎33 + 𝑎55 𝑎34

    

0 0 −𝑎51 0 0 −𝑎52 𝑎42 −𝑎53 −𝑎43 𝑎44 + 𝑎55

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 = 

    

 

where 

  𝑎 = 𝛽1 − 𝛽10, 𝛼 = 𝛽2 + 𝛽6 + 𝛽8 + 𝜇, 𝛽 = 𝛽2 + 𝛽5 + 𝜇 and 𝛾 = 𝛽4 + 𝛽9 + 𝜇. 

Theorem 4.11  

  (i) If 𝛽10 < 𝛽1 and 2𝛽8𝑎𝐸
∗ + 𝛼𝛾 + 𝛽8𝛽9 > 𝛽8𝛼 then 𝑑𝑒𝑡𝕁𝑝0 < 0. 

  (ii) if we have : 

  (a) 𝛽3 < 𝛽 

  (b) 
2(𝛽1−𝛽10)𝐵

𝜇
< 𝛽6 + 𝜇 

  (c) 𝛽9 <
𝛽7𝐵

𝜇
 

  (d) 𝛽8 +
𝛽7𝐵

𝜇
< 𝜇 

  then 𝕁
𝑝0
[2]

 is diagonally dominant in columns. 

  (iii) the equilibrium point of (4.1) is asymptotically stable.                                                                                             ⧫ 

5. Conclusions 

  • In this part I, a generalized SEIR model of COVID-19 was discussed. After a glance on basic properties of the 

model including, the basic reproduction number and the equilibria of the model, we turned on the stability of these 

states. It was proved that the free equilibrium state is locally as well as globally asymptotically stable when ℛ0 <
1. Furthermore, the second additive compound matrix approach was used to establish the local asymptotic stability 

of free equilibrium state when ℛ0 > 1. 
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  • In second paper (Part II), In order to control the Covid-19 system, i.e., force the trajectories to go to the equilibria 

we will add some control parameters with uncertain parameters to stabilize the five-dimensional Covid-19 system 

studied in this paper.  

  Based on compound matrices theory, we have constructed in Intissar (2020) [3] the controllers: 

  𝕌 = 

(

 
 
 
 
 
 
 

0 𝑢1 0 0 0

    
𝑢2 0 0 0 0

    
0 0 0 0 0
    
0 0 0 0 0
    
𝑢3 0 0 0 0

)

 
 
 
 
 
 
 

i.e. 𝕌 = (𝑢𝑖𝑗) where 𝑢𝑖𝑗 = 0 except (𝑢12, 𝑢21, 𝑢51) ∈ ℝ
3; 1 ≤ 𝑖, 𝑗 ≤ 5 

  to stabilize the system (4.1), in particular to study the stability of following matrix : 

     𝕁𝑝∗,𝑢1,𝑢2,𝑢3 = 𝕁𝑝∗ + 𝕌 and its second additive compound matrix (𝕁𝑝∗ +𝕌)
[2], by applying again the criterion of Li-

Wang on second compound matrix associated to the system (4.1) with these controllers.  

  We have constructed a Lyapunov function 𝕃 of the system (4.1) for apply the classical Lyapunov theorem and to get: 

Theorem 4.12 

  (i) (0,0,0,0,0) is a stable equilibrium point in the sense of Lyapunov. 

  (ii) 𝕍(𝑒, 𝑖, 𝑐, ℎ, 𝑑) < 0,0 < ||(𝑒, 𝑖, 𝑐, ℎ, 𝑑)|| < 𝑟1 for some 𝑟1, i.e. if 𝕃 is lnd. 

  (iii) (0,0,0,0,0) is an asymptotically stable equilibrium point.               ⧫ 
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