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Abstract 

Background: The recent pandemic of COVID19 that has struck the world is yet to be battled by a potential cure. 

Countless lives have been claimed due to the existing pandemic and the societal normalcy has been damaged 

permanently. As a result, it becomes crucial for academic researchers in the field of bioinformatics to combat the existing 

pandemic. Materials and Methods: The study involved collecting the virulent strain sequence of SARS-nCoV19 for the 

country USA against human host through publically available bioinformatics databases. Using in-silica analysis, reverse 

vaccinology, and 3-D modelling, two leader proteins were identified to be potential vaccine candidates for development 

of a multi-epitope drug. Results: It was revealed that the two leader proteins ORF1ab MT326102 and MT326715 had the 

highest extinction coefficient and the lowest score on the GRAVY. Along with the given parameters, these leader 

proteins were highly stable and were also antigenic in nature. The two selected epitopes were then docked against their 

respective alleles to obtain the global energy scores, which was the lowest of all possible pairs. Conclusion: The epitopes 

which displayed the lowest global energy score on docking with the alleles were selected and proposed as successful and 

potential vaccine candidates for multi-epitope vaccine development. 
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1. Introduction 

A new infection respiratory disease was first observed in the month of December 2019, in Wuhan, situated in the 

Hubei province, China. Studies have indicated that the reason of this disease was the emergence of a genetically-novel 

coronavirus closely related to SARS-CoV. This coronavirus, now named as nCoV-19, is the reason behind the spread 

of this fatal respiratory disease, now named as COVID-19. The initial group of infections is supposedly linked with 

the Huanan seafood market, most likely due to animal contact. Eventually, human-to-human interaction occurred and 

resulted in the transmission of the virus to humans. 

Since then, nCoV-19 has been rapidly spreading within China and other parts of World. At the time of writing this 

article (mid-March 2020), COVID-19 has spread across 146 countries. A count of 164,837 cases has been confirmed 

of being diagnosed with COVID-19, and a total of 6470 deaths have occurred. The cumulative cases have been 

depicting a rising trend and the numbers are just increasing. WHO has declared COVID-19 to be a “global health 

emergency” [1]. 

2. Current Scenario and Objectives  

Currently, research is being conducted on a massive level to understand the immunology and genetic 

characteristics of the disease. However, no cure or vaccine of nCoV-19 has been developed at the time of writing this 
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article.  

Though, nCoV-19 and SARS-CoV are almost genetically similar, the respiratory syndrome caused by both of 

them, COVID-19 and SARS respectively, are completely different. Studies have indicated that – “SARS was more 

deadly but much less infectious than COVID-19.”-World Health Organization. 

The spread of SARS epidemic has provided with any useful insights as during that time the virus epidemic was 

contained only through general prevention means and treatment of the individual symptoms. As a result, there exists 

only a limited number of tools available to test the coronavirus for their ability to infect humans. This has acted as a 

major limitation for predicting the next zoonotic viral outbreak [2]. 

In response to the current medical crisis, the World Health Organization has activated the R&D Blueprint for the 

acceleration of the development of diagnostics, therapeutics and vaccines for treatment of this novel coronavirus [1-3]. 

The objective of this study lies in compliance to the guidelines for research activated by WHO. This study aims to 

utilize a reverse-vaccinology approach in order to identify potential vaccine candidates for COVID19 for the country 

USA. We shall be deploying open-access bioinformatics tools for our analysis of the same. 

3. Materials and Methods 

3.1. Strain Selection 

The virulent strain of SARS-CoV-2 was selected for in-silico analysis. The genome of the viral strain is made 

available by NCBI - National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov.in). The reference 

identification for SARS-CoV-2 is given by RefSeq NC_045512.2. 

3.2. Protein Identification and Retrieval 

14534 viral protein sequences of the SARS-CoV-2 were obtained from the ViPR – Virus Pathogen Database and 

Analysis [4]. These protein sequences were identified and downloaded in a tabular format for the Host – Humans and 

the Country – USA. Table 1 depicts randomly selected four protein sequences obtained out of the 14534 collected 

under the ViPR databases along with their respective properties.  

Table 1. Apart from the properties mentioned in the above table, other parameters obtained from the ViPR databases 

included the Protein Length, Maturation Status, Collection Data, Entire Protein Sequence Availability, Strain Name etc. 

Gene Symbol 
Gene Product 

Name 
GenBank Protein Accession Host Country Virus Species 

nsp3 nsp3-pp1a/pp1ab VIPR_ALG4_229595251_2700_8465.1 Human USA 
Severe acute respiratory syndrome-

related coronavirus 

nsp7 nsp7-pp1a/pp1ab VIPR_ALG4_229595251_11754_12002.1 Human USA 
Severe acute respiratory syndrome-

related coronavirus 

nsp1 leader protein VIPR_ALG4_229595251_246_785.1 Human USA 
Severe acute respiratory syndrome-

related coronavirus 

nsp8 nsp8-pp1a/pp1ab VIPR_ALG4_229595251_12003_12596.1 Human USA 
Severe acute respiratory syndrome-

related coronavirus 

-N/A- Nucleoprotein ACQ82735.1 Human USA 
Severe acute respiratory syndrome-

related coronavirus 

3.3. Physiochemical Property Analysis 

The FASTA-file for all the 14535 protein sequences was downloaded and loaded in R using “SeqinR” and 

“Biostrings” packages. The different physicochemical properties were analysed using the “Peptides” package in the R. 

[5-7]. 

3.4. Protein Antigenicity  

VaxiJen 2.0 is used to predict the antigenicity of the protein based on the FASTA-files that contain their respective 

amino acid sequences. The online software predicts the antigenic score for the same [8-9]. 

3.5. B-Cell and T-Cell Epitope Prediction 

The T-cell and B-cell epitopes of the selected two leader protein sequences were predicted using the IEDB (The 

Immune Epitope Database). IEDB is a freely available resource funded by NIAID. It is a catalog that contains the 

experimental data on antibody and T cell epitopes studied in humans, non-human primates, and other animal species 

in the context of the infectious disease, allergy, autoimmunity, and transplantation. It also assists in hosting tools for 

predicting and analysing the epitopes [10]. 

https://www.ncbi.nlm.nih.gov.in/
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For MHC Class-I T-cell epitope prediction for ORF1ab leader proteins, NetMHCpan EL 4.0 method was used. 

This method was applied for the HLA-A*11-01 allele. For MHC Class-II T-cell epitope prediction for ORF1ab leader 

proteins, Sturniolo prediction method was used. This method was applied for the HLA DRB1*04-01 allele. For B-cell 

lymphocyte epitope prediction, Bepipered Prediction Method was used [11]. Ten epitopes were selected on random for 

analysis of their antigenicity, allergenicity, topology and conservancy. 

3.6. Allergenicity, Topology and Toxicity Prediction of the predicted Epitopes 

AllerTOP v2 (https://www.ddg-pharmfac.net/AllerTOP/) was used for determining the allergenicity of selected 

epitopes. ToxinPred server (https://webs.iiitd.edu.in/raghava/toxinpred/protein.php) was used to determining the 

toxicity of the selected epitopes. The prediction of transmembrane helices in proteins was determined using the 

TMHMM Server v2.0 (http://www.cbs.dtu.dk/services/TMHMM/).  

3.7. Prediction of Conservancy of the Epitopes selected 

The conservancy of the selected epitopes was analysed using the conservancy analysis tool of the IEDB server. For 

this analysis, the parameter for the sequence identity threshold was adjusted to ‘>=50’ [10]. 

3.8. 3D Structure Generation for Epitopes selected 

In order to generate the 3D structure of the epitopes choses, the PEP-FOLD3 tool was used. PEP-FOLD 

(http://bioserv.rpbs.univ-paris-diderot.r/services/PEP-FOLD3/) uses a de novo approach to predict the peptide 

sequences from the amino acid sequences [12-14]. It utilizes the structural alphabet SA letters to describe the 

conformations of four consecutive residues. 

3.9. Molecular Docking of the Epitopes selected 

The pre-docking of the selected epitopes was done using the UCSF Chimera. It was also used to perform pre-

docking of the selected alleles HLA-A*11-01 (for MHC Class-I) and HLA DRB1*04-01. Later, the docking of the 

peptide-protein was done using HPEPDOCK. HPEPDOCK is a web server of performing blind peptide-protein 

utilizing hierarchical algorithm [15]. Instead of performing length stimulations to refine peptide conformations, 

HPEPDOCK studies the peptide flexibility through an ensemble of peptide conformations produced by the MODPEP 

program. 

4. Results 

4.1. Selection and Retrieval of Potential Vaccine Candidate information 

The SARS-CoV-2 strain was identified. All the 14534 protein sequences were analysed on the basis of the 

physicochemical properties to select the top five candidates for further analysis. For the physicochemical analysis, the 

number of amino acids, instability index, aliphatic index, and the grand average of hydrophobicity (GRAVY) scores 

of the all the 14,534 proteins were taken using the Peptides package in R. This package allows the identification, 

selection and analysis of multiple amino acid sequences in the same FASTA-file. Hence, it was utilized. 

The physicochemical study unveiled five potential candidates, as shown in Table 2, having the lowest score of 

GRAVY and instability index less than 40 (hence, displaying stability). These five candidates were individually 

analysed for their molar extinction coefficients and antigenicity. 

Table 2. Physicochemical property analysis for SARS-CoV-2 against the top five viral proteins having the lowest GRAVY 

scores and confirmed stability out of the 14,534 proteins obtained from ViPR database 

Ref. 

No. 

Instability 

Index 

Is Stable or 

Not? 

Aliphatic 

Index 
GRAVY 

Gene 

Symbol 

Gene Product 

Name 

GenBank 

Accession 
Strain Name 

10946 29.075 Stable 86.5 -0.43333 ORF1ab leader protein MT326049 
SARS-CoV-2/human/USA/WA-UW-

1872/2020 

6333 23.70167 Stable 76.77778 -0.42444 ORF1ab leader protein MT326102 
SARS-CoV-2/human/USA/UNKNOWN-

UW-1818/2020 

13832 27.65111 Stable 88.11111 -0.40167 ORF1ab leader protein MT293180 
SARS-CoV-2/human/USAWA-

UW415/2020 

8854 28.97056 Stable 85.94444 -0.40111 ORF1ab leader protein MT326175 
SARS-CoV-2/human/USA/WA-UW-

1616/2020 

9248 27.59556 Stable 87.55556 -0.395 ORF1ab leader protein MT326144 
SARS-CoV-2/human/USA/WA-UW-

1695/2020 
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4.2. Antigenicity and Extinction Coefficients of the Potential Candidates 

The VaxiJen 2.0 tool was used to analyse the antigenicity of the potential five candidates and the molar extinction 

coefficient was analysed using the ExPASy’s online tool –ProtParam. Out of the five potential candidates (depicted in 

Table 3), only two were selected for further analysis. This was based on the criteria of having the highest score of 

predicted antigenicity and highest values of the extinction coefficients. 

Table 3. The table depicts the extinction coefficient and antigenicity scores of the selected five potential vaccine candidates 

from ViPR database 

Ref No Extinction Coefficient (in M-1cm-1) Antigenicity Scores and its Results Threshold 

10946 12950 0.4097 Antigen 0.4 

6333 12950 0.4624 Antigen 0.4 

13832 12950 0.4045 Antigen 0.4 

8854 12950 0.5166 Antigen 0.4 

9248 12950 0.3886 Non-antigen 0.4 

These two were: ORF1ab leader protein MT326102 and the ORF1ab leader protein MT326175. They both had the 

same molar extinction coefficient of 12950 but, different yet high scores of predicted antigenicity – 0.4624 and 0.5166 

respectively. Both the leader proteins were then used for further analysis. 

4.3. T-cell and B-cell Epitope Prediction 

The T-cell epitopes of the MHC Class-I for both the leader protein were determined using the NetMHCpan EL 4.0 

prediction method of the IEDB server keeping the sequence length at 9. This tool allows the generation of the epitopes 

and sorts them on the basis of their percentile scores. Randomly, ten potential epitopes, depicted in Tables 4 and 6, 

were selected randomly for the antigenicity, allergenicity, toxicity, and conservancy tests.  

For MHC class-II, T-cell epitopes (HLA DRB1*04-01 allele) of the proteins were also determined using the IEDB 

Analysis tools. The Sturniolo prediction methods were used for the same. Again, ten potential candidates were chosen 

based on the same criteria as that of MHC Class-I. These potential candidates, along with their physiochemical 

properties have been depicted in Tables 5 and 7. The B-cell epitopes of the proteins were selected using the Bepipered 

Linear Epitope Prediction method of the IEDB server. 

Table 4. List of MHC Class-I epitopes for selected leader protein ORF1ab MT326102 along with their respective 

antigenicity score, allergenicity, topology, conservancy and toxicity measure. The epitope in bold italics represented the 

chosen epitope for 3D Generation. 

Epitope start end Antigenicity and its Scores Allergenicity Topology Conservancy Toxicity 

SLVPGFNEK 3 11 Antigen 1.4706 Allergen outside 100 Non-Toxin 

VAYRKVLLR 116 124 Non-Antigen -0.456 Non-Allergen inside 100 Non-Toxin 

HVGEIPVAY 110 118 Antigen 0.6413 Allergen outside 100 Non-Toxin 

LSEARQHLK 39 47 Antigen 0.6432 Allergen inside 100 Non-Toxin 

VLLRKNGNK 121 129 Non-Antigen -0.7264 Non-Allergen inside 100 Non-Toxin 

VGEIPVAYR 111 119 Antigen 0.8204 Allergen inside 100 Non-Toxin 

GEIPVAYRK 112 120 Antigen 0.9683 Allergen inside 100 Non-Toxin 

RTAPHGHVM 77 85 Non-Antigen 0.2594 Allergen inside 100 Non-Toxin 

AYRKVLLRK 117 125 Non-Antigen -1.2982 Non-Allergen inside 100 Non-Toxin 

RSDARTAPH 73 81 Antigen 0.5509 Non-Allergen inside 100 Non-Toxin 
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Table 5. List of MHC Class-II epitopes for selected leader protein ORF1ab MT326102 along with their antigenicity scores, 

allergenicity, topology, conservancy scores, and their respective toxicities. The epitope in bold italics is selected for further 

3D Structure generation. 

Epitope start end Antigenicity and its Scores Allergenicity Topology Conservancy Toxicity 

YRKVLLRKNGNKGAG 118 132 Non-Antigen -0.3957 Non-Allergen inside 100 Non-Toxic 

VLLRKNGNKGAGGHS 121 135 Non-Antigen 0.26931 Non-Allergen inside 100 Non-Toxic 

RKVLLRKNGNKGAGG 119 133 Non-Antigen -0.3521 Non-Allergen inside 100 Non-Toxic 

LRKNGNKGAGGHSYG 123 137 Non-Antigen -0.065 Non-Allergen inside 100 Non-Toxic 

LLRKNGNKGAGGHSY 122 136 Non-Antigen 0.0677 Non-Allergen inside 100 Non-Toxic 

KVLLRKNGNKGAGGH 120 134 Non-Antigen -0.1236 Non-Allergen inside 100 Non-Toxic 

AYRKVLLRKNGNKGA 117 131 Non-Antigen -0.3975 Non-Allergen inside 100 Non-Toxic 

VQLNNNNNNNNNNNN 14 28 Antigen 0.7033 Non-Allergen inside 100 Non-Toxic 

THVQLNNNNNNNNNN 12 26 Antigen 0.7759 Non-Allergen inside 100 Non-Toxic 

NEKTHVQLNNNNNNN 9 23 Antigen 0.7719 Allergen inside 100 Non-Toxic 

Table 6. List of MHC Class-I epitopes for selected leader protein ORF1ab MT326175 along with their antigenicity, 

allergenicity, toxicity, topology and conservancy. The epitope in bold italics is selected for further 3D Structure generation. 

Epitope start end Antigenicity and its scores Allergenicity Toxicity Topology Conservancy 

SLVPGFNEK 3 11 Antigen 1.4706 Allergen Non-Toxic outside 100 

VAYRKVLLR 116 124 Non-Antigen -0.456 Non-Allergen Non-Toxic inside 100 

HVGEIPVAY 110 118 Antigen 0.6413 Allergen Non-Toxic outside 100 

LSEARQHLK 39 47 Antigen 0.6432 Allergen Non-Toxic inside 100 

VLLRKNGNK 121 129 Non-Antigen -0.7264 Non-Allergen Non-Toxic inside 100 

LSLPVLQVR 16 24 Antigen 1.3892 Non-Allergen Non-Toxic outside 100 

VGEIPVAYR 111 119 Antigen 0.8024 Allergen Non-Toxic inside 100 

GEIPVAYRK 112 120 Antigen 0.9683 Allergen Non-Toxic inside 100 

RTAPHGHVM 77 85 Non-Antigen 0.2594 Allergen Non-Toxic inside 100 

AYRKVLLRK 117 125 Non-Antigen -1.2982 Non-Allergen Non-Toxic inside 100 

Table 7. List of MHC Class-II epitopes for selected leader protein ORF1ab MT326175 along with their antigenicity, 

allergenicity, toxicity, topology and conservancy scores. The epitope in bold italics is used for further 3D Structure 

generation. 

Epitope start end Antigenicity and its scores Allergenicity Toxicity Topology Conservancy 

YRKVLLRKNGNKGAG 118 132 Non-Antigen -0.3957 Non-Allergen Non-Toxin inside 100 

VLLRKNGNKGAGGHS 121 135 Non-Antigen 0.2631 Non-Allergen Non-Toxin inside 100 

RKVLLRKNGNKGAGG 119 133 Non-Antigen -0.3521 Non-Allergen Non-Toxin inside 100 

LRKNGNKGAGGHSYG 123 137 Non-Antigen -0.065 Non-Allergen Non-Toxin inside 100 

LLRKNGNKGAGGHSY 122 136 Non-Antigen 0.0677 Non-Allergen Non-Toxin inside 100 

KVLLRKNGNKGAGGH 120 134 Non-Antigen -0.1236 Non-Allergen Non-Toxin inside 100 

AYRKVLLRKNGNKGA 117 131 Non-Antigen -0.3975 Non-Allergen Non-Toxin inside 100 

VQLSLPVLQVRNNNV 14 28 Antigen 1.1707 Non-Allergen Non-Toxin outside 100 

THVQLSLPVLQVRNN 12 26 Antigen 1.1956 Allergen Non-Toxin outside 100 

NEKTHVQLSLPVLQV 9 23 Antigen 0.6916 Non-Allergen Non-Toxin inside 100 

4.4. Topology Identification of the Epitope 

 The topology of the chosen epitopes was determined using the TMHMM v2.0 server 

(http://www.cbs.dtu.dk/services/TMHMM/). The potential T-cell epitopes, whose topology, antigenicity, allergenicity, 

toxicity and conservancy was analysed, for ORF1ab leader proteins MT326102 and MT326175 are depicted in the 

following tables. 
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4.5. Antigenicity, Allergenicity, Toxicity, and Conservancy Analysis of the Epitopes 

On the analysis of the antigenicity, allergenicity, toxicity, and conservancy analysis of the T-cell epitopes, it was 

found that most of them were antigenic, simultaneously being non-allergenic, non-toxic and higher values of 

conservancy. From the ten selected MHC Class-I and MHC Class-II T-cell epitopes, one from each category were 

selected from both the leader proteins. The criteria for being selected were having the higher antigenic scores, non-

allergenicity, non-toxicity, and conservancy value above 90%. The selected epitopes were: RSDARTAPH, 

VQLNNNNNN, LSLPVLQVR, and VQLSLPVLQ. The B-cell epitopes of the ORF1ab leader proteins are 

displayed in the Figures 1 and 2. 

4.6. Generation of the 3D Structures of Epitopes 

Figures 3(a-d) depict the PEP-FOLD3 generated 3D structures of the selected T-cell epitopes of MHC Class-I and 

Class-II: RSDARTAPH, VQLNNNNNN, LSLPVLQVR, and VQLSLPVLQ. 

 

Figure 1. B-cell epitope prediction of the ORF1ab leader protein MT326102 

 

Figure 2. B-cell epitope prediction of the ORF1ab leader protein MT326175 
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Figure 3. (a-d) 3D structure generation of the selected epitopes. (a) Selected T-cell MHC Class-I epitope for ORF1ab leader 

protein MT326102. (b) Selected T-cell MHC Class-II epitope for ORF1ab leader protein MT326102. (c) Selected T-cell 

MHC Class-I epitope for ORF1ab leader protein MT326175. (d) Selected T-cell MHC Class-II epitope for ORF1ab leader 

protein MT326175. 

4.7. Peptide-Protein Docking using HPEPDOCK Server 

HPEPDOCK Server was used to perform docking of the peptide and protein. The purpose of the same was to 

analyse which of the two selected T-cell MHC Class-I epitope: RSDARTAPH and LSLPVLQVR had the lowest 

global energy. The epitope having the lowest global energy acts as a better vaccine candidate. The docking was 

performed against the HLA-A*11-01 allele whose pdb format was obtained through pre-docking using UCSF 

Chimera. 

The global energy for the selected Class-I epitopes were: -182.706 and -191.198 respectively for RSDARTAPH 

and LSLPVLQVR. Out of the two MHC Class-I epitopes selected for leader proteins ORF1ab MT326102 and 

MT326175, the global energy was lowest for LSLPVLQVR (as modelled in Figure 4). For the MHC Class-II T-cell 

epitope, the docking was performed against the HLA DRB1*04-01 allele. Same procedure was followed as mentioned 

before. The two selected epitopes after the previous analysis were: VQLNNNNNN and VQLSLPVLQ. The global 

energy for the selected epitopes were -203.369 and -238.196 respectively. 

Out of the two T-cell MHC Class-II epitopes selected for the ORF1ab leader proteins MT326102 and MT326175, 

the lowest global energy was of VQLSLPVLQ (as modelled in Figure 5). 
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Figure 4. The peptide LSLPVLQVR is shown in the surface (yellow) format which has been docked against the HLA-A*11-

01, displayed in the ribbon format. The format of the allele and the peptide are differed on purpose to show distinction. 

 

Figure 5. The peptide VQLSLPVLQ is shown in the surface (yellow) format which has been docked against the HLA 

DRB1*04-01, displayed in the ribbon format. The format of the allele and the peptide are differed on purpose to show 

distinction. 
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5. Discussion and Conclusion 

The scope of this study involved performing an in-silica analysis of the SARS-CoV-2 viral strain for the country of 

USA against human host. The ViPR database was used for the same to obtain all the protein sequences. A total of 

14534 viral protein sequences were obtained whose extensive physicochemical analysis was done to select a group of 

two. This extensive analysis was performed using Peptides package in the R Software. It was revealed that the two 

leader proteins ORF1ab MT326102 and MT326715 had the highest extinction coefficient and the lowest score on the 

GRAVY. Along with the given parameters, these leader proteins were highly stable and were also antigenic in nature.  

The FASTA-formatted files of these selected proteins were taken and analysed to obtain the potential T-cell and B-

cell epitopes. The T-cell epitopes of MHC Class-1 and MHC Class-II were analysed on the basis of their scores. Ten 

randomly selected T-cell epitopes from both the classes were taken for further analysis of allergenicity, toxicity, 

conservancy scores and antigenicity. Only one epitope from both the classes was selected which possessed a higher 

conservancy score (more than 90%), was non-toxic, non-allergic and antigenic in nature.  The two selected epitopes 

were then docked against their respective alleles to obtain the global energy scores. The epitopes which displayed the 

lowest global energy score on docking with the alleles were selected and proposed as successful and potential vaccine 

candidates. 
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