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Abstract 

Random Forest (RF), a mostly model-free and robust machine learning method, has been successfully applied to right-

censored survival data, under the name of Random Survival Forest (RSF). However, RF/RSF has its distinct strategies in 

classification and prediction. First, it is an ensemble classifier and its performance is an average of multiple rounds of 

data fitting. Second, the training set is a bootstrap (sampling with replacement) generated set with repeated used of 

roughly 2/3 of all samples and testing set consists of those not used (out of bag samples). Both features are not intrinsic to 

Cox regression or other single classifiers. Not considering these two features could potentially lead to a partial 

comparison between the performance of the two methods. By using a colorectal survival dataset, we illustrate the 

problems of using k-fold cross-validation, using only one resampling without an ensemble average, and using the whole 

dataset for both fitting and testing, in Cox regression, when comparing with RSF. We provide a more accessible R code 

for simple calculation of discordance index (D-index) and unweighted integrated Brier score (IBS) for Cox regression, 

and unweighted IBS for RSF. 
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1. Introduction 

In cancer epidemiology studies, one of the most commonly used analyses is Cox regression, which regresses the 

right-censored time-to-death data on risk factors. In recently years, new methodologies are introduced to survival 

analysis. An all-embracing name “machine learning" covers a whole spectra of these new techniques [1], with most of 

them “model free" making less assumption about the data. 

We are particularly interested in the Random Forest (RF) [2] (or Random Survival Forest (RSF) when it is applied 

to survival analysis), because RF/RSF is easy to explain, easy to code, and easy to apply to data. There are already 

many articles published about application of RSF to survival data [3, 4] and its comparison to the standard method in 

survival analysis, i.e., the Cox regression (also called proportional hazards regression). 

Even though public software are available making the application of RSF easy, being unfamiliar with the new 
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method leads people to use the default parameter values, and unaware that the performance of RSF may change with 

the parameter value [5-7], as well as not able to compare its performance fairly with standard approaches. The latter 

problem is partly due to the fact that RSF is an ensemble classifier (data fitter), not the one-time-only run of Cox 

regression. Performance comparison between the two are often not carried out appropriately. Moreover, RSF has a 

particular way in choosing training dataset (sample with replacement, or bootstrap) and testing dataset (samples not 

chosen by the bootstrap). 

If the performance of Cox regression is measured from a testing set which is not equivalent to that in RSF, then the 

estimated performances of RSF and Cox regression are not equivalent. Besides the extremely unfair choice of using 

the whole dataset as both training and validation, the seemingly fair k-fold cross-validation for Cox regression is also 

not appropriate, in two different ways. First, it is not equivalent to RSF in that each sample is only used once in 

training whereas in the bootstrap set, a sample can be used more than once. Second, the typical value for 𝑘 is 10, 

meaning the performance is averaged over 10 times, whereas the number of runs in RSF ensemble learning is of the 

order of hundreds or thousands. 

Many good practice known by data analysts may not been made explicit or emphasized enough in the literature. 

We share our experience in our comparison of Cox regression and RSF on a colorectal cancer survival data. Although 

there are excellent software packages professionally written, we still found it difficult to find an error comparison 

program that fits our need. Therefore, we share our simple but hopefully accessible code in public domain. 

2. Data 

All analyses in this paper are done using n=221 colorectal patients, collected from Mustafa Kemal University 

Medical Oncology Department, with 7 independent variables: age (mean=60.5 year), gender (91 male, 130 female), 

cancer type (152 colon cancer, 69 rectal cancer), leukocyte (range: 3220-29440, plus one outlier 93350), neutrophile 

(range: 1930-27520), lymphocyte (range: 220-3850), and platelet (range: 64000-1145000). The distribution of last 

four variables (blood test results) all peak around 20%-30% of the maximum value (excluding one outlier of white 

blood cell count). The study was approved by the Ethics Committee of Mustafa Kemal University Medical Faculty 

(2020/28). 

The dependent variable is the right censored time to death in the unit of days. The status 𝛿𝑖 = 1 if the i’th person is 

dead at diagonosis-to-death time 𝑇𝑖 , and 𝛿𝑖 = 0 if the i’th person is unavailable (censored) at time after diagnosis 𝑇𝑖 . 

The mean diagonosis-to-death time for patients who die is 617 days (1.69 years), whereas the mean time for censored 

patients is 1128 days (3.09 years). Because the distribution of the time is not normal, mean may not be the best 

characterization of the distribution. For example, the median, geometric mean, mode, of diagonosis-to-death time are 

401, 280, ∼500 days (or 1.1, 0.77, 1.4 years). Thoese for censored patients are 943, 769, 1778 days (or 2.58, 2.1, 4.9 

years). 

There are other information which is not available for all samples, including: cancer stage information (available 

on 80% the samples: 9,28,117,24 persons at stage=1,2,3,4), metastasis status (available on 64% of the samples: 61 

persons whose cancer is spread, 81 are not), and treatment information (on 111 adjuvan and 49 neoadjuvan). Either 

because these variable can be too strong predictor of the survival time or because there are too much missing data in 

them, they are not used as the predicting factors. 

3. Method 

3.1. Random Survival Forest 

We re-introduce Random Survival Forest in more detail because of its importance in understanding the points we 

are making in this paper. We have the right-censored data where where the dependent variable being (𝑇𝑖 , 𝛿𝑖) (𝑖 =
1,2, ⋯ 𝑛 is the index for persons), 𝛿𝑖 is the status (1 if dead, 0 if unknown at the end time of data collection), and 𝑇𝑖  is 

either the time to the 𝛿𝑖 = 1 event or the end time of data collection, for 𝛿𝑖 = 0 samples. The independent variable is 

𝑋𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , ⋯ 𝑥𝑘𝑖 ⋯ ), where 𝑘 = 1,2, ⋯ 𝐾 is the index for variables.   

    1. A randomly-sampling-with-replacement (bootstrap) dataset is produced. This dataset contains 𝑛 items (same 

number as the original dataset), but two or more items can be identical because of the “with replacement" 

requirement. In general, 1 − 𝑒−1 = 0.632 = 63.2% independent samples from the original dataset are chosen. 

    2. These 𝑛 items are used to produce a decision tree, i.e., a series of node at which samples are classified (split into 

two branches) according to some independent variables, so that there is a maximum discriminative power 

between the two branches: 

(a) At each node, a randomly selected 𝐾0 ≤ 𝐾 independent variables are used to split the samples;  

     (b) Each branch should contain at least an average of 𝑛𝑚𝑖𝑛 samples;  
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      (c) Besides #(b), there are other stopping criteria if the discriminative power between the two branches is 

lower than a threshold.  

    3. The cumulative hazard function for each person is estimated from the terminal nodes. 

    4. At each iteration, the error is calculated on those samples that are not chosen by the bootstrap (roughly 𝑒−1 =
0.368 = 36.8% of the samples) – called out of bag (OOB) samples. 

    5. Steps #1 - #4 are iterated 𝑁𝑟𝑒𝑝 times, and the overall error of RSF is an average of 𝑁𝑟𝑒𝑝 errors calculated above. 

The first lesson from the above re-introduction is that RSF is an ensemble learner/classifier/data-fitter, each 

iteration contributes to the overall performance, and the overall error is an average of that in all iterations. Second 

lesson is that RSF’s strategy in training and validation samples partition is different from that in k-fold cross-

validation. In bootstrapped training set, some samples are used multiple times, whereas in k-fold cross-validation, one 

training sample is used only once. The third point to note is that there are several parameters controlling the tree 

construction process, and it is taken as granted that their default setting lead to the optimal performance. 

Let us review parameters described above and their correspondence in the function rfsrc in the R package  

randomForestSRC: number of rounds (number of trees), 𝑁𝑟𝑒𝑝 ( ntree in rfsrc, with default value of 1000; minimum 

(after averaging over all nodes) number of samples per node before stopping, 𝑛𝑚𝑖𝑛 ( nodesize in rfsrc, with the deault 

value of 15). 

3.2. Programs Used 

All survival analyses are carried out by two R statistical packages ( www.r-project.org), including survival [8],  

randomForestSRC [4]. Some analyses in the Discussion section use the R packages pec [9] and ipred [10]. 

3.3. Measure of Error: Integrated Brier Score 

For binary outcomes, the Brier score [11] (at given time point) is simply the mean square difference between the 

predicted survival probability 𝑝𝑖(𝑡) and the actual survival situation at that time, if known (index 𝑖 for samples: 𝑖 =
1,2, ⋯ 𝑛):  

𝐵𝑆(𝑡) =
1

𝑛
∑𝑛

𝑖=1 {

(𝑝𝑖(𝑡) − 1)2  𝑖𝑓  𝑡  <   𝑡𝑖     

𝑝𝑖(𝑡)2  𝑖𝑓  𝑡  ≥   𝑡𝑖  , 𝛿𝑖 = 1 

𝑁𝐴  𝑖𝑓  𝑡  ≥   𝑡𝑖  , 𝛿𝑖 = 0 

  (1) 

 Note that when time 𝑡 passed the censored time 𝑡𝑖, we do not know whether the person survives or not, thus the 

prediction of the survival of that sample can not be checked (shown as NA – not available). The integrated Brier score 

can be defined as an average of BS(𝑡) at all available time points in the dataset, 𝑇𝑗 (𝑗 = 1,2, ⋯ , 𝑛𝑇), and the integral is 

approximated by a summation:  

𝐼𝐵𝑆 ≈
1

𝑛𝑇
∑𝑗 𝐵𝑆(𝑇𝑗)   (2) 

 Equation 2 is the “unweighted" IBS: we do not use the weighted IBS because we want to make the calculation as 

simple as possible. 

For randomForestSRC R package [4], the object produced by rfsrc function contains the predicted survival 

probability for both the OOB samples (rfsrc()$survival.oob) and the “in the bag" training samples (rfsrc()$survival), in 

a single array of length 𝑛 × 𝑛𝑇 (one sample of length 𝑛𝑇 followed by the second sample, etc). The available time 

points {𝑇𝑗} can be obtained by rfsrc()$time.interest 

The survfit function from survival R package [8] can be used to obtain the predicted survival probability. The 

surfit(coxph(), newdata=...)$surv produces a matrix with n-row (𝑛 = number of samples) and 𝑛𝑇-column (𝑛𝑇 = 

number of time points). The surfit(coxph(), newdata=...)$time is the list of observed time points. Using the predicted 

survival probability from the output survfit/coxph (from the survival package), we wrote our own R function to 

calculate IBS for Cox regression [12]. The R function and data that support the findings of this study are openly 

available in github at github.com/wlicol/coxrsf. 

3.4. Measure of Error: D-index or One Minus the Concordance Index (C-index) 

Concordance index used in survival data is defined as the proportion of correct prediction on survival by the model 

in all pair of samples. It can also be called Harrell’s C-index named after the author of the measurement [13]. More 

specifically, for any two samples where at least one of them has status=1 (e.g. dead), if the survival time for the person 

whose model-predicted risk for death is higher, then the sample pair is said to be concordant. Percentage of concordant 

pairs is the C-index. One minus the C-index, or proportion of discordance pairs, is called C-error by Ishwaran et al. 

(2008) [4], can also be called D-index for discordance rate. 
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3.5. Parameter Tuning and Setting in RSF 

Following the discussions in (e.g.) [5], we examined the impact of the number of trees (𝑁𝑟𝑒𝑝, ntree in rfsrc of the R 

package randomForestSRC), the minimum number of samples (on average) per node before stopping the growth of the 

tree 𝑛𝑚𝑖𝑛, nodesize in rfsrc of the R package randomForestSRC), and number of variables used to split a tree 𝐾0 (or mtry 

in rfsrc). We did not see obvious impact of mtry on performance probably because the number of independent variables 

(seven) is too small [7]. The impact of ntree and nodesize on RSF performance is shown in Figure 1. 

Figure 1. OOB D-index for RSF as a function of (A) number of trees (𝒏𝒕𝒓𝒆𝒆); (B) minimum (after averaging over all nodes) 

number of samples per node before stopping (𝒏𝒐𝒅𝒆𝒔𝒊𝒛𝒆); OOB IBS for RSF as a function of (C) 𝒏𝒕𝒓𝒆𝒆; and (D) 𝒏𝒐𝒅𝒆𝒔𝒊𝒛𝒆. 

Figure 1(A) and (C) shows OOB D-index and IBS as a function of ntree in our colorectal survival data with 7 

independent variables. At the default value of ntree=1000, the variation of the error calculation seems to be minimum. 

At 500 trees, the variation is about the same level. However, when the number of tree is too low (e.g. < 100), we may 

either get a very small error or a very large one for D-index, and larger error for IBS, by chance. 

Figure 1(B) and (D) shows OOB D-index and IBS as a function of nodesize. Both are not flat, and there is a 

gradual decrease of error when 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 is increased. A larger nodesize means a lesser grown tree, and it might 

prevent tree overfitting. However, if nodesize as a percentage of the total sample size 𝑛 is too large, it may have a 

chance to fit the data. With the guidence from Figure 1, we chose ntree=500 and nodesize=15. 

Although traditionally, the training set selected is by bootstrap (subsampling with replacement), the default setting 

in rfsrc of randomForestSRC is samptype = “swor" or sampling without replacement. We changed the setting to swr 

(sampling with replacement) to be consistent with the original literature. Our conclusion is not affected by using  

samptype = “swor", which is recommended by some papers because of the availibility of theoretical results [5], but 

the Cox regression fitting will need to be carried out on the sampling without replacement training set also. 
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4. Results 

4.1. Always Compare Performance on Equivalent Sets 

We run RSF 100 times on the colorectal dataset with 7 independent variables and calculate IBS for both OOB 

samples and IB (in-bag) samples, both directly provided by the rfsrc function (see Methods). The number of trees is 

fixed at 500, and nodesize value is randomly selected from (10-20). Figure 2(A) shows the sorted OOB IBS (black) 

and IB IBS (blue) from small to large. It is well known that OOB errors is larger than IB errors. 

Figure 2. IBS (integrated Brier score) by both Random Survival Forest (RSF) and Cox regression for the colorectal survival 

dataset in various validation set selections and choice between ensemble or single classifier. (A) RSF: for OOB (black), IB 

(blue), and weighted of both (0.632 of OOB and 0.368 for IB) (orange); (B) Cox regression: for OOB (black), IB (blue), and 

0.632-weight (orange), whole dataset as both training and testing (red), unique IB (dark blue); (C) Cox regression: 3-fold 

CV(red), 10-fold CV(blue); (D) Cox regression: single classifier OOB (blue). The Cox OOB IBS in (B) is reproduced in (C) 

and (D) for comparison.  

Similarly, we run Cox regression 100 × 500 times, where in each group of 500 runs, a random bootstrap set is used 

for fitting the regression, which is then applied to the OOB samples to calculate IBS (using our custom R code, see 

Methods); these 500 IBSs are averaged to get one IBS similar to that for RSF. Again, Figure 2(B) shows that IB (blue) 

has lower errors than OOB (black). 

It was suggested Efron (1983) [14] that the testing error rates can be weighted down by a factor of 1 − 𝑒−1 =
0.632, with the rest (weight = 𝑒−1 = 0.368) replaced by training error rates. These weighted down errors when it is 

done on the forest level for RSF and on individual run level (equivalent to tree level) for Cox regression are shown in 

Figure 2(A) and (B) (orange). If we compare the IBS between RSF and Cox regression, that on OOB set in RSF 

should be compared to that on OOB set in Cox regression. Similarly, IB should be compared to IB, and 0.632-

weighted error should be compared to another 0.632-weighted error. 

Two more types of error are shown in Figure 2(B) for Cox regression. One is to use all samples as both training 

and testing set (red). As there is no random factor involved, there is only one value. The red line is simply a repetition 

of the single value 10 times. Another type (we called it “unique IB") is to use each person/sample, if they are sampled 



SciMedicine Journal       Vol. 3, No. 1, March, 2021 

71 

 

multiple times in IB due to sample-with-replacement procedure, only once towards the error calculation (dark blue). 

Both are similar to IB error, though slightly higher. 

4.2. Performance Determined by OOB Samples and by k-fold Cross Validation may not be the Same for Cox 

Regression 

Most people use a k-fold cross-validation to evaluate the performance of Cox regression. In k-fold cross-validation, 

the whole dataset is partitioned into k groups: rotating each k-1 groups as training then applied to the kth group for 

error calculation, the final error is the average of these k errors. The 𝑘 = 3 choice leads to a situation similar to RSF in 

that 66% of the samples are used for training whereas 33% of the samples for validation. However, there are still two 

differences: one being that the training set in RSF contains 𝑛 examples instead of (𝑘 − 1)𝑛/𝑘 for k-fold validation, 

another being that the final error in RSF is an average of 𝑁𝑟𝑒𝑝 ( ntree) runs and that in k-fold validation in Cox 

regression is an average of 𝑘 runs; and typically 𝑘 ≪ 𝑁𝑟𝑒𝑝. 

Figure 2(C) shows (sorted from small to large) IBS of 100 runs for 3-fold validation and 10-fold validation. Both 

tend to have a lower error than those calculated from OOB samples (average of the 100 runs: 19.86% for OOB, 

19.58% for 3-fold CV, 19.28% for 10-fold CV). There have been several publications addressing related issues, 

though not necessarily for survival data [15, 16]. Whether the choice of OOB overestimates the error or choice of k-

fold cross-validation underestimates the error, the message from Figure 2(C) is that when two models are compared, 

the same validation data selection scheme should be used. 

4.3. Only the Ensemble Classifier Version of Cox Regression should be used in a Fair Comparison, not the 

Single Classifier Version 

Since RSF is an ensemble classifier whereas Cox regression can be considered as a single classifier [17-19], our 

proposal for a fair comparison between the two is to convert Cox regression to an ensemble classifier. It is done by 

repeated random sampling subset and using the OOB samples for error calculation, then averaging errors from these 

individual runs. 

What if Cox regression remains to be a single classifier? In other words, what if the repeated bootstrap, OOB error 

calculation is reduced to only one run? Figure 2(D) shows the OOB error for Cox regression without multiple runs. It 

is clear that without the averaging of multiple (e.g. 500 times) runs, the errors fluctuate widely (standard deviation (sd) 

for ensemble classifier version of the Cox regression: 0.001, whereas the sd for the single classifier: 0.024). If one use 

the single classifier version of Cox regression to compare with with RSF, sometimes the conclusion can be Cox 

regression outperforms RSF, and other times RSF outperforms Cox regression. 

4.4. Similar Conclusions using D-index 

The conclusions from Figure 3 can be similarly reached by the error calculation of D-index (see Method section). 

Figure 3(A) shows that the D-index for Cox regression with OOB, IB, unique-IB, as well as using the whole dataset as 

both training and testing, and D-index for RSF using OOB as testing set. All Cox regression errors as measured by D-

index using some samples in both training and testing set are lower than RSF-OOB, but those using OOB have higher 

errors. A fair comparison would lead to the conclusion that RSF performs better than Cox regression. 

Similar to IBS, D-index also shows that k-fold cross-validation for Cox regression leads to lower error than using 

OOB as testing set. The 10-fold CV has, on average, lower D-index error than 3-fold CV. The conclusion based on a 

fair comparison, i.e., using OOB error in both RSF and Cox regression, clearly favors RSF over Cox. However, when 

10-fold CV error for Cox regression is used to compare the OOB error for RSF, the two two D-index errors are very 

close. 

Finally, same as IBS, the D-index calculated by one-time OOB set for Cox fluctuates wildly from run to run. 

Single classifier has higher variance for error rate than ensemble classifiers, including both (e.g. 500-time) OOB and 

10-fold CV, 3-fold CV. 
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Figure 3. D-index (discordance index, or 1-Cindex, or C-error) by both Random Survival Forest (RSF) and Cox regression 

for the colorectal survival dataset in various validation set selections and choice between ensemble or single classifier. (A) 

RSF-OOB (grey), Cox-OOB (black), Cox-IB (blue), Cox-unique-IB (green), Cox-whole (red). The mean of RSF-OOB (grey) 

and mean of Cox-OOB (black) are shown by two short horizontal bars; (B) Cox-10-fold-CV (blue), Cox-3-fold-CV (red), 

Cox-OOB-single-classifier (green). The RSF-OOB, Cox-OOB are reproduced in (B) as a comparison. The means of Cox-10-

fold-CV (blue), Cox-3-fold-CV (red), and Cox-OOB-single-classifier (green) are shown by short horizontal bars.  

5. Discussion 

Random survival forest has several advantages over traditional survival analysis method, such as being unlikely to 

overfit the data with the complete set of independent variables, its easiness in judging the importance of variables for 

the purpose of variable selection, and its ability to incorporate nonlinear, interactive roles of multiple variables. These 

are not the topic addressed in the paper. 

The motivation of this paper is an observation we have made on existing literature: that when RSF is compared to 

Cox regression, many papers conclude that the two have similar performance [20, 21], while detail concerning the 

error calculation (on the Cox regression side) is not provided [22-26]. Some comparisons are even hard to judge 

because k-fold CV is introduced to RSF [27], or models with different number of independent variables are compared 

[28]. Steele et al. (2018) and Zhang et al. (2019) [29, 30], k-fold CV is used in evaluating other models including Cox 

regression, which may be another example of unfair comparison. 

On the other hand, when the performance is fairly compared, i.e., when the error is calculated over OOB ensemble 

for Cox regression, RSF usually is the winner over Cox regression [31, 32]. The practice in Appendix C of Myte 

(2013) [33] is almost fair except the Cox regression is treated as a single predictor instead of an ensemble classifier. 

Unfortunately, we found more unfair or potentially unfair comparisons of error in the literature than the correct ones, 

with the latter more likely carried out in thesis, manual pages, or computer scientists and statisticians than applied 

researchers. This justifies the need to highlight this issue, i.e., the test set where the error rate or performance is 

calculated, should be equivalent when comparing two different data analysis techniques. 

Although there is a professional written R packages pec [9] for evaluating IBS error in different situations, the aim 

of the package is to be as generic and wide as possible. To make the program to work as desired and to understand 

most detail may require a steep learning curve for practitioners whose main expertise is in a non-mathematical/non-
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statistical field. We try to fill this void by providing a simply written R codes for calculating only IBS/RSF (OOB), 

IBS/Cox (new samples), and D-index/Cox (new samples). The D-index/RSF (OOB) is the default output of error rate 

in randomForestSRC package). The R code is in github.com/wlicol/coxrsf. 

Our codes only require a list of predicted survival probability of each person at sequence of time of interest [34]. 

For RSF, we use the survival.oob part of a rfsrc object to obtain the survival probability. For Cox regression, we use 

the survfit function from the survival R package (the surv part) to obtain the survivial probability. 

To double check our program, Figure 4 shows a comparison of Brier score, estimated by using the fitted RSF on 

the whole dataset itself (not OOB), as a function of time, between our code and two other programs, pec and 

sbrier/ipred. We found that (1) the pec and sbrier/ipred results are very similar, as they both use the inverse 

probability of censoring (IPC) weights [3, 4]. (2) Our simple code without using any weights lead to very similar 

result as the weighted BS’s. (3) Our program has an extra option to print out BS(t) contributed from deceased samples 

(status=1) and cencored ones (status=0) separately. Figure 4 shows a huge difference between the two. 

It was pointed out that when the independent variables contain both discrete and continuous variables, continuous 

variables may have an advantage to be chosen more often as the variable to split trees in RF (not RSF specific) [5]. 

This may rank some continuous variable ahead of categorical variables, and if the categorical are actually more 

important, underestimate the classifier performance [35]. This issue does not affect the analysis in this paper because 

our categorial variables (cancer type and gender) are not actually important. Also, this bias potentially underestimates 

the performance of RSF, so correcting the bias would make RSF even better than Cox regression. 

 

Figure 4. Brier score as a function of time for colorectal data calculated by two public domain programs and our simple R 

code. This is using the predicted survival function from the trained RSF to the whole dataset (not OOB). (black) from the  

pec program in the pec R package; (blue) from the sbrier program of the ipred R package; (red solid) from our own simple 

R codes, where the contribution from the deceased samples (status=1) is in red dashed lines, and contribution from the 

censored samples (status=0) is in pink dashed line.  

6. Conclusion 

In conclusion, in the current literature of application of random survival forest to real data, the majority of them 

may not compare the performance of RSF and Cox regression fairly, when the error (D-index or IBS) is not calculated 

on OOB samples, and/or without enough number of repeated trainings/testings. The k-fold CV may increase the 

performance of Cox regression over OOB, and if k is too small, the error rate may vary from run-to-run. We provide 

simple R code to aid the practive of fair comparison between RSF and Cox regression. 
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7. Abbreviations 

BS: Brier Score IB: In-bag (samples) 

C-index: Concordance index IBS: Integrated Brier Score 

CV: Cross-validation OOB: Out-of-bag (samples), 

D-index: Discordance index RSF: Random Survival Forest 
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