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Abstract 

The present study endeavors in the preparation and characterization of semi crystalline 45S5 bioglass (BG) (SiO2-CaO-

P2O5) through sol gel process. Dry press mold technique was used in the preparation porous BG tablets to examine the 

bioactivity through invitro studies. The synthesized BG powder was subjected to structural, morphological and mechanical 

characterization and the bioactivity was examined in vitro by immersing the BG tablet in the Simulated Body Fluid (SBF) 

solution. XRD pattern and the SEM micrographs revealed the semi crystalline nature of BG with spherical morphology. The 

elemental analysis confirms the presence of vital constituents required for Bone regeneration (Calcium, Phosphorous, Silica, 

and Sodium). The surface characterization of BG tablet reveals the pores structure of average pore size of 240nm which 

contributed to the high surface activity resulting in formation of carbonated hydroxy apatite (HCAP) when immersed in 

SBF. The disintegration studies denoted the stabilization period was after 48 of immersion of BG tablets in SBF solution. 

The compressive strength measurement of the tablet also reveals the higher mechanical stability. 
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1. Introduction 

Multiple degenerative, inflammatory joint and bone diseases affected millions of people worldwide. A report in 

2007 given by Bone and Joint Decade’s association predicted that people over 50 years of age affected by bone 

diseases will double by 2020 [1]. Recent developments in tissue engineering in the field of orthopedic implants look 

forward to develop the regeneration capabilities of the host tissues with the help of bioactive materials in order to 

overcome the above stated problem [2]. A material is termed to bioactive, if it results in the bone formation between 

material and tissue under proper biological conditions.  

The concept of “Bioactivity” is the basic principle of this Biomaterial. Bioactive glasses are a group of surface 

reactive glass-ceramic bioactive materials which are biocompatible. The bioactive nature of these glasses had 

facilitated to investigate them for implant device in the human body to promote bone regeneration. This Bioactive 

glasses (BAGs) were discovered in 1969 proved to be an alternative for interfacial bonding of an implant with host 

tissues. This has led a pathway for using slowly resorbable bioactive glasses as a biomaterials designed exclusively for 

the repair and replacement of damaged or diseased bones [3]. Bioactive glass is silicate based materials which contains 

calcium and phosphate along with it. Bioactive glass were biocompatible with the tissues resulting in formation of 

Hydroxy apatite (HAP) [4]. Safety of product is very important aspect of the medical field, so various studies were 

carried out to test the safety for clinical applications [5].  
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Bioactive glasses are of different composition. Some classes of bio active glasses included are 45S5 

(45 mol% SiO2, 24.5 mol% CaO, 24.5 mol% Na2O and 6.0 mol% P2O5), 58S glass (60 mol% SiO2, 36 mol% CaO and 

4 mol% P2O5), 70S30C (70 mol% SiO2, 30 mol% CaO) and S53P4 which is a bacterial growth inhibiting bioactive 

glass (53 mol% SiO2, 23 mol% Na2O, 20 mol% CaO and 4 mol% P2O5). Among the above stated different 

composition of Bioactive glasses 45S5 which has FDA approval are now being used intraorally as a bone grafting 

materials. From the research activates it is noted that 45S5 has the capability to initiate the  form HCAP (Hydroxy 

carbonated apatite) in a time period not more than 2 hours, also has an excellent binding with tissues. The formation of 

HCAP layer depends on the crystallinity of bioglass [5].  

The two common processes for the formation of bioactive glass are melt quenching and sol-gel synthesis. In melt-

quenching Sodium carbonate (Na2CO3) and calcium carbonate (CaCO3) added together with ammonium dihydrogen 

phosphate (NH4H2PO4) and silica (SiO2) was heated to a high temperature followed by quenching. The dried samples 

were grounded, pressed and immersing into simulated body fluid [6].  

SiO2-CaO-P2O5 composition bioactive glass was synthesized by sol-gel technique which required lower 

temperature compared to the convention melt quench method [7]. Literature reviews suggested that glasses made by 

sol-gel technique has increased bioactivity[8]. Sol–gel method is preferred over melt-casting due to the following 

reasons: lower fabrication temperature, which has prominent role on the cost and the quality of the product, better 

control on composition and homogeneity, and synthesis of nano sized bioglass particles results in higher surface area, 

which increases the dissolution rate in body fluid and might contribute to the raise in bioactivity of the resultant 

material. Additional this higher surface area support to the fact of increase in hydroxyapatite (HAP) or hydroxy 

carbonate apatite (HCAP) formation, which is vital for preparing a suitable environment for attachment and 

differentiation of stem cells. Thus the synthesis methodology of the biomaterials has an important aspect in 

determining the properties and formation of the HAP/HCAP layer.  

Hence sol-gel method was adopted in this work for the synthesis of bioglass. Many reports have indicated bulk 

crystalline bioactive glass-ceramics tends to show less bioactive than their amorphous counterparts while complete 

amorphous showed faster disintegration. Therefore this work was aimed in preparing semi-crystalline bioglass by sol-

gel method. The novelty of the work lies in the fact of obtaining semi-crystalline bioglass with 20% crystallinity 

indicating more amorphous nature which might support for the rapid formation of HAP layer along with the sodium 

combeite which acts as a glass network modifier promotes the precipitation and crystallization of HAP.  

2. Materials and Methods 

2.1. Synthesis of Bioglass 

45S5 bio active glass was synthesized by conventional sol-gel method using the following chemical precursors, 

Tetraethyl orthosilicate Si (OC2H5)4 (TEOS), triethyl phosphate PO (C2H5)3 (TEP), Calcium Nitrate tetrahydrate Ca 

(NO3)2.4H2O and Sodium Nitrate NaNO3 from Sigma Aldrich. The systematic procedure is depicted in the Figure 1. 

The above-mentioned precursors were dissolved in the acidic medium of 0.1M of HNO3 such that the molar ratio 

between the aqueous acidic solution and the chemical precursors was 10. Initially the acidic medium (13ml) was 

magnetically stirred at ambient temperature and TEOS (5.8ml) and TEP (0.5ml) were added to the solution at half an 

hour gap and continuously stirred until a clear solution was obtained. After 30mins, NaNO3 powder (2.33g) was added 

to the solution and stirred until complete dissolution. Finally, the Ca (NO3)2.4H2O powder (3.58g) was added and 

resultant solution was stirred for 1hour to obtain a transparent sol. The sol was aged for 12hours at room temperature 

to make the hydrolysis of polycondensation fully react, to obtain a transparent gel which was heat treated at 60°C for 

12 hours and 200°C for 5 hours subsequently to remove excess of water. A white glassy powder obtained was dried 

700°C for 2hours followed by which a powder of bioactive glass was obtained and characterized [9, 10].  

2.2. Preparation of Bioglass Tablets 

The bioglass powder so obtained was made into a cylindrical tablet of 15mm diameter through dry pressing 

moulding technology by applying 10ton pressing load. Figure 2 depicts the pressed bioactive tablets, which was 

further subjected to in vitro bioactive analysis.  
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Figure 1. Synthesis of bioglass through sol gel route    

 

 Figure 2. Dry pressed bioglass tablets 

2.3. Preparation of Simulated Body Fluid (SBF) 

The in vitro bioactive evaluation of the sol derived bioglass was done in Simulated Body Fluid (SBF) solution. The 

composition of SBF solution is analogous to that of the human plasma. SBF solution was prepared using Kokubo’s 

method. It was prepared by the dissolution of NaCl, KCl, K2HPO4·3H2O, MgCl2·6H2O, CaCl2 and Na2SO4 in 

redistilled water maintaining buffer at pH 7.4 with the assistance of tris(hydroxymethyl) amino methane 

(HOCH2)3CNH2 and HCl [11]. 

2.4. Characterization of Bioactive Glass 

The structural confirmation of the bioactive glass & formation of HAP was studied using Fourier Transformed 

Infrared (FTIR) spectra under ATR condition, using Nicolet iS5-6700 model with wavenumbers ranging from 

4000cm-1 to 500cm-1. Rigaku MiniFlex XRD model using a monochromatic copper radiation (CuKα) of wavelength λ 

= 1.54Ǻ was used to evaluate the crystallinity of bioglass & detect the growth of HAP. The diffractograms were 

recorded in steps of 0.02° in a range of diffraction angles (2ϴ) between 10° and 80°. Particle Size distribution for the 

sol-gel derived bioactive glass was measured using MALVERN particle size analyzer at ambient condition with a 

count rate of 172kcps. The size and shaped of the synthesized bioglass and the Surface morphology of the bioglass 

tablets before and after immersion in SBF were studied using Field Emission Scanning Electron Microscopy (FESEM) 

- FEI Quanta 200 Model SEM. 
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3. Results and Discussion 

3.1. Elemental and Structural Characterization of BG Powder 

Figure 3 displays the FTIR spectrum of Bioglass. In the FTIR spectrum, the two bands at 521 and 539 cm−1 was 

attributed to PO4 bending vibration and the strong band at 1035cm−1 was caused by PO4 symmetric stretching 

vibration. The small peak at 575 and 615 cm-1 refers to P–O bonds, which shows a crystalline phosphate-rich phase. 

Two small double peaks at 669 and 698 cm-1 are correlated with the symmetric stretching of Si-O–Si in the crystalline 

silicate (9). The band emerges at 887 and 925cm-1is associated to the Si–O with one non-bridging oxygen (Si–O-

NBO) per SiO4 tetrahedron which is formed through the presence of the glass network modifier, creating Si-O groups.  

At 1453 cm-1 a small broad peak is seen which can be assigned to the (CO3
2-) band of carbonates adsorbed on surfaces 

due to high reactive surface [9]. 
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Figure 3. FTIR Spectrum of Sol-Gel Derived 45S5 Bioactive 

Figure 4.a shows the X-Ray diffraction pattern of sol-gel derived bioactive glass. The XRD pattern reveals the 

amorphous nature of 45S5 bioactive glass with crystalline sodium calcium silicate phases. Among them, combeite 

Na2Ca2Si3O9 (ICDD PDF #22.1455) is the prominent one. The formation of the combeite phase is associated to the 

heat treatment performed at 700°C during the stabilization. 
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Figure 4. (a) X-Ray Diffraction of 45S5 Bioactive Glass; (b) W-H Plot 

This is the characteristic structure of the bioactive glass synthesized by the sol-gel process. Heat treatment at high 

temperature (700°C) for 2 hours of time had led to the formation of the crystalline apatite-like phosphorous-rich phase 

Na2Ca4(PO4)2SiO4 (ICDD PDF# 32. 1053) [12]. Low intensity Sodium nitrate peak (ICDD PDF#036-1474) was also 

identified to be present in the bioglass. XRD result infers the presence of oxides of silica, sodium, calcium and 

Phosphorous. The degree of crystallinity was determined to be 19.40 %, hence the obtained bioglass was considered to 

be Semi-crystalline. The Deconvoluting size and strain broadening were evaluated using Williamson –Hall plot 

(Figure 4.b) The strain factor (βe) was determined as 0.0174 and average crystallite size was calculated as 10.41nm. 

The materials with small size crystalline (less than 100nm) is stated to be amorphous. Here amorphous is attributed 

due to disorder of crystal in macro scale which is also supported by lesser degree of crystallinity [13]. 

3.2. Morphological Characterization of BG Powder 

The surface characteristics & size of the bioglass were studied using FESEM & PSA respectively. Figure 5 depicts 

the particle size distribution curve of 0.5mg of synthesized bioactive glass dispersed through ultrasonication for 15 

minutes in 3ml of deionized water  

 

Figure 5. (a) Particle Size Analysis; (b) 25kX Magnification; (c) Size distribution of bioglass 

From the size distribution intensity data, it is inferred that the particle size distribution ranges from 190-250nm 

with maximum intensity peak obtained at 220 nm signifying the average particle size of the 45S5 bioactive glass. The 

appearance of single maxima peak indicates the uniform size distribution of particles. The occurrence of smaller 

particle size induce high surface reactivity, which will attribute to the faster formation of HAP Layer[14]. Figure 5(b) 

depicts morphology of the sol-gel derived bioglass. It is inferred from the micrograph that the synthesized bioglass are 

spherical in shape with circular morphology. The average size of the particle was measured to be 208nm which 
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coincides with the particle size obtained from the PSA analysis. It is clearly visible from the SEM image that there is 

more agglomeration of the particles from which attributes to the high surface reactivity of BG nanoparticles. The size 

distribution (Figure 5(c)) obtained from micrograph was observed to be well matches with the particle size analysis 

where the maximum size distribution was obtained in the range of 200 to 220nm.  

3.3. Compositional Analysis 

In order to study the elemental composition of bioglass, it was subjected to energy dispersive spectroscopy (EDS). 

From EDS (Figure 6), the presence of the essential elements (silica, sodium, calcium & phosphorous) are evident, 

which confirms that the synthesized nanomaterial is Bioglass. Also, the bioglass is observed to be oxygen rich. The 

presence of Au and Pd element in the EDS spectrum is due to the conductive coating done for the SEM analysis.  

 

Figure 6. EDS spectrum of bioglass 

3.4. Mechanical Characterization of Compressed BG Tablets  

3.4.1. Density  

Cylindrical pellet of 15mm diameter and thickness of 3mm was obtained from dry press mold which weighed 0.9 

gm. The density of the pellet was estimated to be 1.6 gm/cc3.   

3.4.2. Compressive Strength   

The mechanical strength of the tablet was studied using axial compressive strength. Figure 7 shows the 

compressive stress strain curve measured at room temperature. From S-S curve the ultimate compressive strength and 

modulus were determined as 56.63 MPa and 2649 MPa, which are adequate to replicate the bone strength. The 

obtained compressive strength is higher than previously reported data as far as our survey is considered [10].  The 

mechanical stability in the tablet was attributed due to the semi-crystalline nature BG and porous structure in the 

tablet. 
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 Figure 7. Compressive Stress – Strain Curve of Bioglass Tablet 
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3.4.3. Disintegration Studies  

In order to study the resistance towards disintegration of the tablets, the prepared tablet was immersed in 80 ml of 

SBF for a stipulated period and weight loss as a function of time was measured. The weight loss behavior of BG tablet 

immersed in SBF solution is shown in Figure 8.  It is observed that that the weight of BG tablet initially increased 

(upto to 8 hours) because of the absorption of the solution by its porous structure. Subsequently, slight decrease in 

weight was observed after 12 hours upto 0.2% and the maximum weight loss of 1.3% was observed after 48 hrs. After 

48 hours, the weight of BG tablets remains stable, from which it is evident that no significant disintegration of 

bioglass particles was observed. It can be inferred that, the degradation and deposition of material had reached to a 

dynamic balance [10].  
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Figure 8. Weight loss study of the BG Tablet 

3.5. In Vitro Reactivity on Nanoscale and Biocompatibility 

The kinetics of hydroxyapatite formation on the 45S5 bioglass tablet was monitored using FT-IR measurements, 

XRD characterization and SEM analysis. The SBF immersed pellet were taken out at certain time period (1, 2 & 3 

weeks) and dried at 25°C overnight and then analyzed for its surface reactivity. 

3.5.1. FT-IR Analysis 

Figure 9 represents the significant changes in the bonds of the bioglass tablet. After immersion in SBF, P–O bonds 

which represent HAP (Ca10 (PO4)6(OH)2) crystallization, become evident through the growth of peak around 1025 cm-1. 

As the stretching P–O bond at 1025 cm-1 is superimposed on the Si–O stretching bonds corresponding to the 

biomaterial; it becomes difficult to discriminate them [15]. From the above spectrum it is evident that rapid exchange 

of protons H3O+ from the SBF with Ca2+ , Na+ ions in bioglass to form the Si-OH groups, followed by loss of soluble 

silica as Si(OH)4 by breaking of Si-O-Si bridging links  which is the reason behind the diminishing of the Si-NBO 

band [16]. The growth of carbonate peak around 1300 cm-1 indicated that the formed HAP are carbonated HAP 

(HCAP).  
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Figure 9. FTIR Spectrum of SBF immersed Bioglass Pellet 

Table 1. Ratio of P-O bond to Si-NBO Bond 

Days in SBF Solution Ration of P-O to Si-NBO 

0 days 0.75 

7 days (1 week) 1.39 

14 days (2 weeks) 1.71 

21 days (3 weeks) 2.14 

 

 

 Figure 10. Rate of Apatite Formation 

As shown in Table 1, this ratio P/Si becomes relatively increasing which an appropriate sign for HCAP formation 

reaction in the gel-derived 45S5 bio glass. To estimate the growth rate of the HCAP formation a graph is plot between 

the time period and P-O to Si-NBO ratio. From the graph (Figure 10) the rate of formation of HCAP is estimated to be 

0.06 which is nearly to the already reported data (0.08) [15].  
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3.5.2. XRD Analysis 

The XRD pattern of the samples soaked in SBF for 1, 2 &3 weeks are given in the Figure 11. Peak around 19.8° 

signifies the PVA content which is added during the formation of pellet as a binder. During the first week the XRD 

pattern is amorphous in nature. Because the sodium combeite are restructured by the release of the sodium ions when 

interacts with the SBF and results in formation of the silica gel. Appearance of the peak around 35°, 49° and 59° 

denotes the formation of the Calcium phosphate [16]. 
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Figure 11. Diffractogram of SBF immersed Bioglass Pellet 

The diffractogram of 2nd week is also amorphous in nature because of the formation of amorphous calcium 

phosphate layer which is the base layer for the HCAP growth. The X-Ray diffraction of the 3rd week is tending to be 

crystalline in nature signifies the growth of the HCAP layer by utilization of the amorphous Ca-P layer. Appearance of 

peak around 25° and 32° along with intensification of the peaks around 35° and 49° denotes the HCAP formation 

(ICDD 9432)  increases with the soaking time confirming the successful deposition of HCAP on the BG pellets. The 

reactions kinetics of the BG pellets showed a formation of calcite which was detected with a peak at 28.7° (JCPDS 

#47-1743), likely due to the high surface area of the particles [16].  

3.5.3. SEM with EDS 

Figure 13 depicts the FESEM image of the bioglass tablets before and after immersion in SBF solution. From the 

micrograph it is estimated that the pore size of the tablet ranges from 150 nm to 380 nm and average pore size of 

240nm, which reveals the porous nature of the surface (ref insert of Figure 12.a). It is evident from the micrographs of 

the tablets the growth of HCAP after immersion in SBF solution exhibited a smooth surface due to the growth of 

apatite layer as supported by FTIR and XRD results. Also, the growth of HCAP layer is observed to be increasing over 

the period of time. The porous nature of the bioglass tablet surface supports the growth of HCAP.  
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Figure 12.  SEM image of bioglass tablet (a) before immersion; (b) after 1 week immersion; (c) after 2 week immersion and 

(d) after 3 week immersion in SBF solution 

 

Figure 13. EDS curve of Bioglass after immersion in SBF 

 

Figure 14. Quantitative Elemental Composition 



SciMedicine Journal         Vol. 1, No. 3, September, 2019 

122 

 

After incubated in SBF for 21 days, the surface of BGC particle became smoother and heavily agglomerated. Many 

small protuberances grew on the surface of BG clusters (Figure 12 (c&d)).Quantitative elemental analysis denoted in 

Figure 14 obtained from the EDX data (Figures 6 and 13) indicated the increase of phosphorous by 73% denotes the 

growth if HCAP layer and the decrease of sodium content by 74% indicates the fact that the Na glass network 

modifier contributed to the precipitation of HCAP on the surface of BG particles after soaking in SBF. 

4. Conclusion 

Semi-crystalline 45S5 type bioglass was synthesized by sol gel method and made into tablet. The presence of 

major constituents of bioglass like sodium, calcium, phosphorus and silica was confirmed using FTIR, XRD and EDS 

analysis. The particle size of the bioglass was determined as around 200 nm, contributing to higher surface area. The 

invitro bioactivity of the bioglass tablet was tested by immersing the BG tablet in SBF solution and analyzed using 

FTIR, XRD and SEM. The studies confirmed that the semi-crystalline nature, presence of sodium combite and the 

porous nature of bioglass tablet attributed to the growth of Carbonated hydroxy apatite (HCAP) on the surface of the 

tablet. The kinetics of the HCAP growth was analyzed through FTIR and observed the rate as 0.06 units / day. The 

bioglass tablet was also observed to be mechanically stable with the compressive strength and modulus of 56.63 MPa 

and 2649 MPa respectively which was attributed due to the semi-crystalline nature of BG nanoparticles and the pores 

present in the tablet. The sol derived 45S5 bioactive glass possess good rate of bioactivity and exhibits high 

mechanical strength. Hence this glass can be used in preparation of porous scaffolds using polymers by 

Electrospinning for enhanced bioactivity 
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