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Abstract 

Progesterone (P4) plays a pivotal role in maintenance of pregnancy in many mammalian species. Species-specific P4 

metabolites have been shown to function as primary acting progestogen and the receptor binding capacity varies between 

species. The European roe deer (Capreolus capreolus) displays a 4-5 month period of embryonic diapause, which decouples 

fertilization from implantation. The majority of roe deer have two corpora lutea that secrete P4. No changes in P4 

concentrations have been observed during pre-implantation embryo development. As 5α-DHP is known to play a major role 

during pregnancy in elephants and horses, we hypothesized that 5α-DHP functions as additional progestogen facilitating 

embryo reactivation. The profile of 11 progestogens was quantified in roe deer plasma over the course of diapause and 

resumption of embryo development including P4, 3α- and 3β-DHP, 20α- and 20β-DHP, 5α- and 5β-DHP, 3α,5α- and 3α,5β-

THP, as well as 3β,5α- and 3β,5β-THP. While P4 was most abundant during diapause and resumption of development, 20α-

DHP was the most abundant P4 metabolite. This is different than in pregnant elephants, where 5α-DHP was most abundant, 

and the luteal phase in cattle, where 3α,5α-THP was most abundant. With the exception of a weak correlation of 3β,5α-

THP, none of the progestogens significantly correlated with embryonic development in the roe deer. Thus, plasma 5α-DHP 

does not seem to play a role in embryo reactivation. We propose that progestogens might contribute to priming the 

endometrium for supporting embryo development and preparation for implantation. 
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1. Introduction 

Steroid hormones play an essential role during the estrus cycle and pregnancy. From early embryonic development 

onwards and throughout maintenance of pregnancy, steroid hormones provide continuous, adequate support for the 

developing offspring. In cattle, the follicular phase lasts for 4-6 days and is characterized by the development of large 

follicles. These large follicles contribute to the increase in peripheral pre-ovulatory estradiol-17β (E2) concentrations 

and induce the pre-ovulatory luteinizing hormone (LH) surge [1]. Upon ovulation, the newly formed corpus luteum 

(CL) reaches its maximal diameter about a week after ovulation. The peripheral progesterone (P4) concentration is 

significantly correlated with the luteal mass [2]. In case of pregnancy, the CL provides continuous support of 

pregnancy either solely as in cattle, pig or goat, or together with the placenta as observed in sheep and horses [3]. 

Unlike other ruminants where the embryo implants within the first 20 days after fertilization, the European roe deer 

(Capreolus capreolus) displays a prolonged period of preimplantation development, referred to as embryonic diapause 
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[4]. This phenomenon decouples fertilization from subsequent implantation by 4-5 months [4]. Bucks provide 

functional semen from June to August, and rut, copulation and fertilization take place between the end of July and end 

of August [4]. After 4-5 months of diapause, embryo development is resumed in late December. Thereupon, the 

development of the roe deer embryo resembles that of other ruminants [4, 5], namely elongation and 

synepitheliochorial placentation. On average, does develop two CL after estrus [6, 7], which continuously produce P4 

between July/August following ovulation and May/June the following year until fawning [8]. The plasma P4 

concentrations did not show any changes from September to January, whereas it increased after attachment of fetal 

membranes. The latter was therefore suggested to be of placental origin [7-10]. These changes in peripheral P4 were 

not confirmed by others [11, 12]. Lambert (1999) found a fluctuation in luteal P4 from high during diapause, low 

during expansion and elongation, to high during implantation [13]. We recently reported that plasma P4, E2 and total 

estrogen concentrations remained constant between September and January, regardless of the different embryonic 

developmental stages, i.e., blastocysts, elongation and organogenesis [6]. Endometrial P4 and E2 concentrations were 

higher during diapause and elongation than during organogenesis [6]. Thus, we concluded that it is likely that these 

specific ovarian steroid hormones do not play a key role in resumption of embryonic growth [6]. 

Not only P4, but also its metabolites are biologically active and have been show to play a critical role during the 

estrus cycle and pregnancy [14-16]. P4 is can be enzymatically reduced at the C3-, C5- and C20-position [15]. The C3-

reduced P4 metabolites are 3α-dihydroprogesterone (3α-DHP) and 3β-dihydroprogesterone (3β-DHP) [15]. The C20-

reduced metabolites include 20α-dihydroprogesterone (20α-DPH) and 20β-dihydroprogesterone (20β-DHP) [15]. The 

C5-reduced metabolites include 5α-dihydroprogesterone (5α-DHP) and 5β-dihydroprogesterone (5β-DHP) [15], which 

can be further metabolized to allopregnanolone (3α,5α-THP) and isopregnanolone (3β,5α-THP), and pregnanolone 

(3α,5β-THP) and epipregnanolone (3β,5β-THP), respectively [15]. These P4 metabolites can bind the classical 

progesterone receptor (PR) or the GABAA-r, and thereby exert their effect on the estrus cycle and maintenance of 

pregnancy [14, 17, 18]. The PR has two isoforms, namely PR alpha and beta [19]. These isoforms selectively 

contribute to the cellular and molecular P4 actions [19]. In African and Asian elephants, P4 levels are 100 to 1000-fold 

lower compared to other mammals [20]. Therefore, P4 was shown to not serve as functional progestogen. Post-

ovulatory plasma 5α-DHP was shown to increase to concentrations similar to P4 levels in other mammals [21]. In 

addition, PR binds 5α-DHP and P4 with similar affinity [22]. Thus, 5α-DHP is considered the functional progestogen 

in elephants. The relative binding affinity of the PR towards of 5C-reduced P4 metabolites, including both 5α-DHP 

and 5β-DHP, has been assessed in several species including horses, elephants, pigs and ruminants [18]. In horses and 

elephants, a relative binding affinity of 75-100% and high blood concentrations of 5C-reduced metabolites were found 

[18]. Specifically in horses, P4 was undetectable in the second half of pregnancy and its function has been shown to be 

taken over by 5α-DHP [14]. In pigs, the PR had an affinity of 50% to 5α-DHP compared to P4, while in ruminants, the 

affinity of PR to 5α-DHP was as low as 15% [18]. Thus, the P4 metabolite 5α-DHP and its binding affinity to the PR 

display a species-specific function in pregnancy.  

We aimed at quantifying the profile of the 11 progestogens in the roe deer plasma over the course of diapause and 

resumption of embryo development. We hypothesized a dynamic progestogen profile and aimed to shed light on the 

potential diapause regulatory role of 5α-DHP. 

2. Materials and Methods 

The reproductive tract of 174 does was obtained during regular huntings from September 2018 to January 2019 

[33]. No animals were specifically killed for the study. Therefore, ethical approval was not required. Blood was 

sampled by cardiac puncture and plasma was retrieved after centrifugation for 10 minutes at 1200 × g at 4°C of whole 

blood collected in hematology potassium EDTA tubes (Sarstedt, Germany). The plasma was snap frozen and stored at 

-80°C until further analyses. The reproductive tract was collected after the animals were shot and kept on ice until 

further processing. The uterus was freed from residual connective tissue and flushed with 2.5 ml phosphate buffered 

saline to recover the embryos. Embryos were visualized under a stereo microscope (Zeiss SteREO Discovery 

Microscope V8, 1:8 Zoom rate equipped with an Olympus SC50 camera). The diameter of each embryo was 

determined and after washing them in fresh PBS, the embryos were fixed in formalin for further analyses. 

All progestogen standards were purchased from Steraloids Inc. (Newport, RI, USA). These included pregnenolone, 

P4, 20α-DHP, 20β-DHP, 3α-DHP, 3β-DHP, 5α-DHP, 5β-DHP, allopregnanolone, isopregnanolone, pregnanolone, 

epipregnanolone, 5-pregnen-3β-ol-20-one-17,21,21,21d4 (P5-d4) and 4-pregnen-3, 20-dione-2,2,4,6,6,17α,21,21,21-d9 

(P4-d9).  

The procedure used for the extraction and quantification of progestogens is described elsewhere in details (Rehm et 

al., Simultaneous Quantification of Progestagens in Plasma and Serum by UHPLC-HRMS Employing Multiplexed 
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Targeted Single Ion Monitoring, in preparation). Hankele et al., (2019), have described the quantification of the 

progestogens in plasma samples previously [15].  

The progestogens were quantified in plasma samples of 89 pregnant does. Samples were selected based on the 

presence of at least one embryo and covered a high density with regard to sampling date and embryo developmental 

stage. Of each doe, 0.5 ml plasma was spiked prior to extraction with P5-d4 and P4-d4 as internal standards (IS). The 

extraction was performed using solid phase extraction with a Strata-X 33 μm polymeric reversed phase cartridge (3 ml, 

60 mg sorbent) (Phenomenex Helvetia GmbH, Basel, Switzerland). After the sample was loaded, the cartridge was 

washed with water (Milli-Q® Advantage A10 purification system, Merck, Bedford, MS, USA) and with 40% 

acetonitrile (ACN)/methanol (MeOH) (85:15) in H2O. The steroids were eluted with a solution of 90% ACN/MeOH 

(85:15). The collected eluent was evaporated to dryness under nitrogen, and the residue was reconstituted in 50 μl of 

50% ACN with 0.1% formic acid (FA) and a volume of 5 μl was injected into the LC-MS system. 

Liquid chromatography was performed on an UltiMate 3000 UHPLC system from Thermo Fisher Scientific 

(Waltham, MA, USA). Compound separation was achieved on an Acquity UPLC HSS T3 column (100 Å, 1.8 μm, 

2.1 mm × 100 mm, Waters, Milford, MA, USA) protected by the corresponding HSS T3 VanGuard pre-column (100 Å, 

1.8 μm, 2.1 mm × 5 mm). The mobile phase consisted of H2O + 0.1% FA (A) and ACN + 0.1% FA (B). The flow rate 

was constant at 0.45 ml/min. Elution was performed starting with isocratic conditions at 58% B during 0.5 min, 

followed by a linear gradient 58–62% B until 3.7 min, then to 66% B until 6.0 min, followed by a washing step with 

100% B for 4 min and a re-equilibration at 58% B for 4 min. The QExactive™ mass spectrometer was used for 

detection of the progestogens. The mass spectrometer was equipped with an ESI ion source (Thermo Fisher Scientific, 

Waltham, MA, USA), which was operated in positive ionization mode. Quantification was performed using the 

TraceFinder® software (Thermo Fisher Scientific, Waltham, MA, USA) in targeted single ion monitoring (tSIM) 

mode. The ratios of the analyte and IS peak area were plotted against concentration. The calibration curve for each 

progestogen was calculated using a quadratic regression with equal weighting, which was forced through the zero-

point. The calibration curves were prepared in charcoal stripped plasma ranging from 0.02 ng/ml to 20 ng/ml 

(calibration curve points: 0.02, 0.05, 0.1, 0.2, 0.5, 1, 5, 10 and 20 ng/mL). Pregnenolone (P5) and 3β-DHP co-eluted 

and are therefore given as a sum. Both method accuracy and precision were determined at three different QC 

concentrations (spiked charcoal stripped plasma; 0.06 ng/ml (P4, P5, 3β-DHP, 20α-DHP, 20β-DHP), 0.2 ng/ml (5α-

DHP, 5β-DHP, 3α-DHP, 3α,5α-THP, 3α,5β-THP, 3β,5α-THP), 0.4 ng/ml (3β,5β-THP), 0.5 ng/ml (all) and 2 ng/ml 

(all); each in duplicates during 4 different runs). The bias of the accuracy was < 15% for all analytes. The interday- and 

intraday precision was < 10% for 20α-DHP, 20β-DHP, 3β-DHP, 5α-DHP, 5β-DHP, 3β,5β-THP, P4 and P5, < 15% for 

3β,5α-THP and < 20% for 3α,5β-THP and 3α-DHP. Information on internal standards, monitored single ions, ion for 

quantification and limit of quantification are given in Table 1. 

Table 1. Analyzed analytes with their respective internal standard, monitored single ions, ion for quantification 

and limit of quantification 

Analyte Internal standard Monitored single ion [m/z] Ion for quantification Limit of quantification [ng/ml] 

P4 P4-d9 314.2246 [M+H]+ 0.05 

P5 + 3β-DHP P5-d4 316.2402 [M-H2O+H]+ 0.05 

5β-DHP P5-d4 316.2402 [M-H2O+H]+ 0.2 

5α-DHP P5-d4 316.2402 [M+H]+ 0.2 

3β,5β-THP P5-d4 318.2559 [M+H]+ 0.3 

3β,5α-THP P5-d4 318.2559 [M-H2O+H]+ 0.1 

3α-DHP P5-d4 316.2402 [M-H2O+H]+ 0.1 

3α,5β-THP P5-d4 318.2559 [M-H2O+H]+ 0.1 

3α,5α-THP P5-d4 318.2559 [M-H2O+H]+ 0.1 

20β-DHP P4-d9 316.2402 [M+H]+ 0.02 

20α-DHP P4-d9 316.2402 [M+H]+ 0.02 

 
Luteal phase progestogen plasma data has previously been published by Hankele et al., (2019), and was used for a 

comparative analysis [15]. For the elephant serum progestogen data, blood samples were available from diagnostic 

purposes (own data not published). As an exemplary sample, a serum sample of day 35 prior to parturition was used to 

illustrate the progestogens during the late phase of pregnancy in the elephant.  
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A metabolism analysis was conducted to gain insight into the species-specific progestogen profiles. For all species, 

relative concentrations of P4 were calculated with respect to the concentration in roe deer. Per species, the 

concentration of each P4 metabolite was plotted relative to P4. Roe deer data were used for a correlation analysis in R 

version 3.6.1 [34, 35]. A Pearson correlation was used and data is graphically displayed and ordered by hierarchical 

clustering. Only statistically significant correlations (p < 0.05) are displayed in the correlation plot. The progestogen 

concentrations were plotted against the embryonic size to display the developmental-dependent changes. A LOESS 

regression, which allows local fitting with the weighted least squares method, was used in R version 3.6.1 [35]. 

3. Results 

Next to P4, we determined 3α-DHP, 3β-DHP + P5, 20β-DHP, 20α-DHP, 5β-DHP, 5α-DHP, 3α,5β-THP, 3α,5α-

THP, 3β,5β-THP and 3β,5α-THP in roe deer plasma over the course of diapause and reactivation. As comparison, 

plasma progestogens were determined in the cow during the luteal phase and in the elephant during late pregnancy 

(Figure 1). While 20α-DHP was the main P4 metabolite, 3α,5α-THP and 3β,5α-THP were second and third most 

abundant in roe deer plasma (Figure 1). In cattle, P4 was the most abundant progestogen, followed by its metabolites 

5α,3α-THP, 5α,3β-THP and 5β,3β-THP [15]. Interestingly, in the elephant, the main progestogen was 5α-DHP, 

followed by 3β-DHP +P5 and 3α,5α-THP. 

 

Figure 1. Plasma concentration of P4 and its metabolites. The concentration of each progestogen is indicated in ng/ml. The 
yellow, grey and purple bars represent the progestogen concentrations in the roe deer during diapause, the luteal phase in 

the cow [15], and late pregnancy in the elephant (unpublished own data) 

The profiles of all progestogens, except 3β,5α-THP, did not significantly change with developmental progression 

defined as either sampling date or embryo size (Figure 2 and Supplementary data I). There was a negative correlation 

between P4 and its metabolites 5β-DHP, 3β,5β-THP and 3α,5β-THP (Figure 2). 
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Figure 2. Pearson correlation plot with hierarchical clustering of the 11 progestogens, embryo size and sampling date. 

Significantly correlated variables (p < 0.05) are displayed and circle size and color indicate the degree of correlation (red 
and blue indicate a negative and positive correlation) 

4. Discussion 

To shed light on the potential diapause regulatory role of the progestogens, we profiled plasma P4, 3α- and 3β-

DHP, 20α- and 20β-DHP, 5α- and 5β-DHP, 3α,5α- and 3α,5β-THP as well as 3β,5α- and 3β,5β-THP in roe deer 

plasma over the course of diapause and reactivation. Using an enzyme-linked immunosorbent assay, we have 

previously shown that plasma and uterine tissue P4 concentrations did not change over time [6]. With the novel LC-

MS based approach and a new set of samples not previously analyzed, we did not find any changes of P4 over time. 

Plasma concentrations were 2-fold lower than previously reported, which is likely due to the limitation of antibody-

based techniques, i.e., non-specific antigen binding of the antibody [16, 23]. None of the measured progestogens 

changed in concentrations with developmental progression.  

P4 has been reported to be of importance for resumption of development in other diapausing species [24]. While in 

mice, P4 was shown to prime the uterus, in mink or tammar wallaby, P4 is necessary to stimulate the reactivation of 

the uterus [24]. Thus, the lack of change of the progestogens in roe deer indicates that they are likely not involved 

reactivation of embryo development. We have previously shown the loss of uterine PR with prolonged P4 exposure 

[25]. As the progestogens are present in significant amounts, they might play a role in priming the uterus like in mice. 

Embryo reactivation in mice is preceded by an E2 surge [24]. Endometrial tissue progestogen profiling should shed 

further light on the local function of progestogens in the priming of the uterus.  

In roe deer, we determined 20α-DHP as main P4 metabolite. In cattle and sheep, the PR binding capacity of 20α-

DHP is approximately 6 times lower than of P4 [26, 27]. In the MCF-7 breast cancer cell line, 20α-DHP has 

previously been shown to have anti-aromatase properties [28]. The anti-aromatase properties of 20α-DHP would result 

in lower plasma E2 concentrations. However, plasma E2 concentrations are higher in roe deer plasma than in bovine 

plasma during pregnancy [6, 29]. Thus, this does not follow the hypothesis that 20α-DHP acts as anti-aromatase agent, 

as the abundance of 20α-DHP is lower in cattle than in roe deer plasma [15]. In mice, the uterus converts E2 into 

catechol estrogens and thereby facilitates reactivation of the diapausing embryo [30]. Even though roe deer plasma E2 

did not change, our results might hint towards a P4-primed uterus, where loss of the PR facilitates implantation, and 

catechol estrogen-induced reactivation of embryo development, as observed in mice [30]. 

Previous reports have shown species-specific abundances of progestogens and their affinity to the PR during the 

estrus cycle and pregnancy [18]. In pre-implantation roe deer plasma, the 5α-DHP concentration was comparable to 

the luteal phase in cattle, but was 13 times lower than during late pregnancy in the elephant [15]. Therefore, it is likely 

that the function of 5α-DHP as main progestogen during pregnancy in elephants is not reflected in the roe deer. 
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Interestingly, the 5β-DHP concentration was approximately one order of magnitude higher in roe deer than in cattle 

and the elephant, while its metabolites 3α,5β-THP and 3β,5β-THP were higher in cattle than in roe deer [15]. The roe 

deer plasma concentration of 3β,5β-THP was comparable to the one in elephants. The progestogens 3α,5α-THP, 

3β,5α-THP, 3α,5β-THP and 3β,5β-THP are classified as neurosteroids that bind the GABAA-r in the brain [31]. In the 

brain of pregnant rats, the plasticity of these receptors is related to fluctuations of endogenous brain progestogen 

concentrations, and the concentrations have been shown to be different then in the plasma [32]. The precise role of 

these neurosteroids in pregnancy is yet to be determined.  

5. Conclusion 

In conclusion, we show that plasma progestogen concentrations did not change with developmental progression. 

We identified 20α-DHP as most abundant P4 metabolite and could not show the contribution of 5α-DHP to pre-

implantation embryo development. We propose that progestogens play a role in priming the uterus for reactivation of 

embryo development and thereby support successful implantation after embryonic diapause. 
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Supplementary Data I 

LOESS fit of the progestogens against embryonic size as proxy for developmental stage. 
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