Generation of Open Metatarsal Fracture in Rats: A Model for Secondary Fracture Healing
Abstract
A fracture model in rats for the study of secondary bone healing was described. Standard open midshaft transverse metatarsal fracture was produced with bone cutting forceps in 28 rats. The commonly open and close fracture models utilized for bone and mineral researches are associated with varying degree of complications ranging from a high degree of fracture comminution to severe associated soft tissue injury which interferes with the healing process. We hypothesized that fracture model in rat third metatarsal bone could be associated with low -post-surgical complications and could be a reproducible model. To test this, open mid-shaft transverse fractures were created on the metatarsals of 28 rats. The objectives of the study were to evaluate the fracture complications, to determine the nature of fracture produced, evaluate the fracture consolidation during healing periods, and to assess the histological and radiographic healing of the fracture. The fracture produced in the mid metatarsal shaft of all rats was 100% transverse, 73% located at the midshaft. Minimal fracture angulations were recorded (0.48 ± 0.09o; 0.78 ± 0.17o) for anterior-posterior and lateral views respectively. Minimal soft tissue injury was recorded immediately post-surgery, but no infection and the delayed union was observed. Varying degrees of weight-bearing lameness was also recorded but seized at day six onward post-operative. Callus index observed was peaked at week 2 and 3 (2.02 ± 0.1, 1.99 ± 0.13) respectively but declined to 1.10 ± 0.04 at week 7 during the consolidation period. The fracture line disappeared completely at week 7. The histological and radiographic healing scores were (3.5 ± 0.13 and 3.75 ± 0.25) respectively (out of the maximum healing score of 4) at week 7 post-operative. There was a positive correlation between the histological and radiographic healing scores. The metatarsal fracture model is considered to be a suitable model for in vivo study of secondary fracture healing.
Â
Doi: 10.28991/SciMedJ-2020-0204-2
Full Text: PDF
Keywords
References
Arvidson, K., Abdallah, B. M., Applegate, L. A., Baldini, N., Cenni, E., Gomezâ€Barrena, E., Granchid, D., Kassem, M., Konttinen, Y. T., Mustafa, K., Pioletti, D. P., Sillat, T. & Finne-Wistrand, A. (2011). Bone regeneration and stem cells. Journal of cellular and molecular medicine, 15(4), 718-746. doi:10.1111/j.1582-4934.2010.01224.x.
Drissi, H., & Paglia, D. N. (2014). Surgical Procedures and Experimental Outcomes of Closed Fractures in Rodent Models. Osteoporosis and Osteoarthritis, 193–211. doi:10.1007/978-1-4939-1619-1_15.
Zhu, Z.-H., Gao, Y.-S., Luo, S.-H., Zeng, B.-F., & Zhang, C.-Q. (2011). An animal model of femoral head osteonecrosis induced by a single injection of absolute alcohol: An experimental study. Medical Science Monitor, 17(4), BR97–BR102. doi:10.12659/msm.881708.
Mills, L. A., & Simpson, A. H. R. W. (2012). In vivomodels of bone repair. The Journal of Bone and Joint Surgery. British Volume, 94-B(7), 865–874. doi:10.1302/0301-620x.94b7.27370.
Bleedorn, J. A., Sullivan, R., Lu, Y., Nemke, B., Kalscheur, V., & Markel, M. D. (2013). Percutaneous lovastatin accelerates bone healing but is associated with periosseous soft tissue inflammation in a canine tibial osteotomy model. Journal of Orthopaedic Research, 32(2), 210–216. doi:10.1002/jor.22502.
Tunio, A., Jalila, A., Meng, G., & Shameha, I. (2014). Experimental fracture healing with external skeletal fixation in a pigeon ulna model. Journal of Advanced Veterinary and Animal Research, 1(2), 58. doi:10.5455/javar.2014.a14.
Mohamad, S., Shuid, A., Mohamed, N., Fadzilah, F., Mokhtar, S., Abdullah, S., … Soelaiman, I. (2012). The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics, 67(9), 1077–1085. doi:10.6061/clinics/2012(09)16.
Hu, J., Qu, J., Xu, D., Zhang, T., Qin, L., & Lu, H. (2013). Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. Journal of Orthopaedic Research, 32(2), 204–209. doi:10.1002/jor.22505.
Abubakar, A. A., Noordin, M. M., Azmi, T. I., Kaka, U., & Loqman, M. Y. (2016). The use of rats and mice as animal models inex vivobone growth and development studies. Bone & Joint Research, 5(12), 610–618. doi:10.1302/2046-3758.512.bjr-2016-0102.r2.
Handool, K. O., Ibrahim, S. M., Kaka, U., Omar, M. A., Abu, J., Yusoff, M. S. M., & Yusof, L. M. (2018). Optimization of a closed rat tibial fracture model. Journal of Experimental Orthopaedics, 5(1). doi:10.1186/s40634-018-0128-6.
Jackson, R. W., Reed, C. A., Israel, J. A., Abou-Keer, F. K., & Garside, H. (1970). Production of a standard experimental fracture. Canadian journal of surgery. Journal canadien de chirurgie, 13(4), 415.
Bonnarens, F., & Einhorn, T. A. (1984). Production of a standard closed fracture in laboratory animal bone. Journal of Orthopaedic Research, 2(1), 97–101. doi:10.1002/jor.1100020115.
Garcia, P., Holstein, J. H., Histing, T., Burkhardt, M., Culemann, U., Pizanis, A., … Menger, M. D. (2008). A new technique for internal fixation of femoral fractures in mice: Impact of stability on fracture healing. Journal of Biomechanics, 41(8), 1689–1696. doi:10.1016/j.jbiomech.2008.03.010.
Holstein, J. H., Matthys, R., Histing, T., Becker, S. C., Fiedler, M., Garcia, P., … Menger, M. D. (2009). Development of a Stable Closed Femoral Fracture Model in Mice. Journal of Surgical Research, 153(1), 71–75. doi:10.1016/j.jss.2008.02.042.
Aurégan, J.-C., Coyle, R. M., Danoff, J. R., Burky, R. E., Akelina, Y., & Rosenwasser, M. P. (2013). The rat model of femur fracture for bone and mineral research. Bone & Joint Research, 2(8), 149–154. doi:10.1302/2046-3758.28.2000171.
De Giacomo, A., Morgan, E. F., & Gerstenfeld, L. C. (2014). Generation of Closed Transverse Fractures in Small Animals. Skeletal Development and Repair, 35–44. doi:10.1007/978-1-62703-989-5_3.
Otto, T. E., Patka, P., & Haarman, H. J. T. M. (1995). Closed Fracture Healing: A Rat Model. European Surgical Research, 27(4), 277–284. doi:10.1159/000129410.
Schindeler, A., Mills, R. J., Bobyn, J. D., & Little, D. G. (2017). Preclinical models for orthopedic research and bone tissue engineering. Journal of Orthopaedic Research. doi:10.1002/jor.23824.
Williams, J. N., Li, Y., Valiya Kambrath, A., & Sankar, U. (2018). The Generation of Closed Femoral Fractures in Mice: A Model to Study Bone Healing. Journal of Visualized Experiments, (138). doi:10.3791/58122.
Shi, E., Chen, G., Qin, B., Yang, Y., Fang, J., Li, L., … Gu, L. (2019). A novel rat model of tibial fracture for trauma researches: a combination of different types of fractures and soft tissue injuries. Journal of Orthopaedic Surgery and Research, 14(1). doi:10.1186/s13018-019-1386-4.
Young, K., Aquilina, A., Chesser, T. J. S., Costa, M. L., Hettiaratchy, S., Kelly, M. B., … Woodford, M. (2019). Open tibial fractures in major trauma centres: A national prospective cohort study of current practice. Injury, 50(2), 497–502. doi:10.1016/j.injury.2018.10.028.
Collier, C. D., Hausman, B. S., Zulqadar, S. H., Din, E. S., Anderson, J. M., Akkus, O., & Greenfield, E. M. (2020). Characterization of a reproducible model of fracture healing in mice using an open femoral osteotomy. Bone Reports, 12, 100250. doi:10.1016/j.bonr.2020.100250.
Foster, A. L., Moriarty, T. F., Trampuz, A., Jaiprakash, A., Burch, M. A., Crawford, R., … Richards, R. G. (2020). Fracture-related infection: current methods for prevention and treatment. Expert Review of Anti-Infective Therapy, 18(4), 307–321. doi:10.1080/14787210.2020.1729740.
Ghiasi, M. S., Chen, J., Vaziri, A., Rodriguez, E. K., & Nazarian, A. (2017). Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Reports, 6, 87–100. doi:10.1016/j.bonr.2017.03.002.
Bahney, C. S., Zondervan, R. L., Allison, P., Theologis, A., Ashley, J. W., Ahn, J., … Hankenson, K. D. (2018). Cellular biology of fracture healing. Journal of Orthopaedic Research, 37(1), 35–50. doi:10.1002/jor.24170.
Yakubu, A. S., Abubakar, A. A., Salihu, M. D., Jibril, A., & Isah, I. (2010). Comparative analysis of chlorhexidine gluconate, povidone iodine and chloroxylenol as scrubbing solution. British Journal of Pharmacology and Toxicology, 1(2), 93-95.
Vento, P. J, Swartz, M. E., Martin, L. B. E. & Daniels, D. (2008). Food intake in laboratory rats provided standard and fenbendazole-supplemented diets. Journal of the American Association of the Laboratory Animal Science, 47(6), 46-50.
Fitzpatrick, N., Bertran, J., & Solano, M. A. (2014). Sliding Humeral Osteotomy: Medium-Term Objective Outcome Measures and Reduction of Complications With a Modified Technique. Veterinary Surgery, 44(2), 137–149. doi:10.1111/j.1532-950x.2014.12213.x.
Sylvestre, A., Wilson, J. & Hare, J. (2002). A comparison of 2 different suture patterns for skin closure of canine ovariohysterectomy. Canadian Veterinary Journal, 43, 699-702.
Gómez-Barrena, E., Rosset, P., Lozano, D., Stanovici, J., Ermthaller, C., & Gerbhard, F. (2015). Bone fracture healing: Cell therapy in delayed unions and nonunions. Bone, 70, 93–101. doi:10.1016/j.bone.2014.07.033.
Lamraski, G., Monsaert, A., De Maeseneer, M., & Haentjens, P. (2006). Reliability and validity of plain radiographs to assess angulation of small finger metacarpal neck fractures: human cadaveric study. Journal of orthopaedic research, 24(1), 37-45. doi:10.1046/j.1365-2842.1997.00443.x.
Porter, S. M., Dailey, H. L., Hollar, K. A., Klein, K., Harty, J. A., & Lujan, T. J. (2016). Automated measurement of fracture callus in radiographs using portable software. Journal of Orthopaedic Research, 34(7), 1224–1233. doi:10.1002/jor.23146.
Abubakar, A. A., Ibrahim, S. M., Ali, A. K., Handool, K. O., Khan, M. S., Noordin Mustapha, M., … Mohamad Yusof, L. (2019). Postnatal ex vivo rat model for longitudinal bone growth investigations. Animal Models and Experimental Medicine, 2(1), 34–43. doi:10.1002/ame2.12051.
Dettmeyer, R. B. (2018). Staining Techniques and Microscopy. Forensic Histopathology, 17–45. doi:10.1007/978-3-319-77997-3_2.
Shoji, T., Ii, M., Mifune, Y., Matsumoto, T., Kawamoto, A., Kwon, S.-M., … Asahara, T. (2010). Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Laboratory Investigation, 90(4), 637–649. doi:10.1038/labinvest.2010.39,
Estai, M. A., Soelaiman, N. I., Shuid, A. N., Das, S., Ali, A. M. & Suhaimi, F. H. (2011). Histological changes in the fracture callus following the administration of water extract of Piper sarmentosum (Daun Kadok) in estrogen-deficient rats. Iranian Journal of Medical Science, 36(4), 281-288.
Willie, B., Adkins, K., Zheng, X., Simon, U., & Claes, L. (2009). Mechanical characterization of external fixator stiffness for a rat femoral fracture model. Journal of Orthopaedic Research, 27(5), 687–693. doi:10.1002/jor.20792.
Claes, L., Maurer-Klein, N., Henke, T., Gerngross, H., Melnyk, M., & Augat, P. (2006). Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. Journal of Orthopaedic Research, 24(6), 1178–1185. doi:10.1002/jor.20173.
Zhang, X., Awad, H. A., O’Keefe, R. J., Guldberg, R. E., & Schwarz, E. M. (2008). A Perspective: Engineering Periosteum for Structural Bone Graft Healing. Clinical Orthopaedics and Related Research, 466(8), 1777–1787. doi:10.1007/s11999-008-0312-6.
Li, H., Jiang, J., Wu, Y., & Chen, S. (2011). Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body. International Orthopaedics, 36(3), 665–669. doi:10.1007/s00264-011-1346-z.
Manigrasso, M. B., & O’Connor, J. P. (2004). Characterization of a Closed Femur Fracture Model in Mice. Journal of Orthopaedic Trauma, 18(10), 687–695. doi:10.1097/00005131-200411000-00006.
Axelrad, T. W., & Einhorn, T. A. (2011). Use of clinical assessment tools in the evaluation of fracture healing. Injury, 42(3), 301–305. doi:10.1016/j.injury.2010.11.043.
Morshed, S. (2014). Current Options for Determining Fracture Union. Advances in Medicine, 1–12. doi:10.1155/2014/708574.
Bigham-Sadegh, A., & Oryan, A. (2014). Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. International Wound Journal, 12(3), 238–247. doi:10.1111/iwj.12231.
Rotter, R., Kraemer, R., Stratos, I., Vogt, P., Vollmar, B., Mittlmeier, T., & Knobloch, K. (2012). Compartmental and muscular response to closed soft tissue injury in rats investigated by oxygen-to-see and intravital fluorescence microscopy. Journal of Trauma and Acute Care Surgery, 73(1), 73–79. doi:10.1097/ta.0b013e31824afddd.
Landry, P. S., Marino, A. A., Sadasivan, K. K., & Albright, J. A. (2000). Effect of Soft-Tissue Trauma on the Early Periosteal Response of Bone to Injury. The Journal of Trauma: Injury, Infection, and Critical Care, 48(3), 479–483. doi:10.1097/00005373-200003000-00018.
Marturano, J. E., Cleveland, B. C., Byrne, M. A., O’Connell, S. L., Wixted, J. J., & Billiar, K. L. (2008). An improved murine femur fracture device for bone healing studies. Journal of Biomechanics, 41(6), 1222–1228. doi:10.1016/j.jbiomech.2008.01.029.
Li, J., Ahmed, M., Samnegård, E., Ahmad, T., Stark, A., & Kreicbergs, A. (2005). Spontaneous correction of angular fracture deformity in the rat. Acta Orthopaedica, 76(3), 434–441. doi:10.1080/17453670510041358.
Haffner-Luntzer, M., Kovtun, A., Rapp, A. E., & Ignatius, A. (2016). Mouse Models in Bone Fracture Healing Research. Current Molecular Biology Reports, 2(2), 101–111. doi:10.1007/s40610-016-0037-3.
DOI: 10.28991/SciMedJ-2020-0204-2
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Adamu Abdul Abubakar, Sahar Mohammed Ibrahim, Ahmed Khalaf Ali, Kareem Obayes Handool, Mohammad Shuaib Khan, Mustapha Mohammed Noordin, Tengku Azmi Tengku Ibrahim, Ubedullah Kaka, Mohamad Yusof Loqman