A Physicist View of COVID-19 Airborne Infection through Convective Airflow in Indoor Spaces

Luis Alfredo Anchordoqui, Eugene M. Chudnovsky

Abstract


General Idea: Naturally produced droplets from humans (such as those produced by breathing, talking, sneezing, and coughing) include several types of cells (e.g., epithelial cells and cells of the immune system), physiological electrolytes contained in mucous and saliva (e.g. Na+, K+, Cl-), as well as, potentially, several infectious agents (e.g. bacteria, fungi, and viruses). In response to the novel coronavirus SARS-CoV-2 epidemic, which has become a major public health issue worldwide, we provide a concise overview of airborne germ transmission as seen from a physics perspective. We also study whether coronavirus aerosols can travel far from the immediate neighbourhood and get airborne with the convective currents developed within confined spaces. Methodology: Methods of fluid dynamics are utilized to analyse the behavior of various-size airborne droplets containing the virus. Study Findings: We show that existing vortices in the air can make a location far away from the source of the virus be more dangerous than a nearby (e.g., 6 feet away) location. Practical Implications: Our study reveals that it seems reasonable to adopt additional infection-control measures to the recommended 6 feet social distancing. We provide a recommendation that could help to slow down the spread of the virus.


Keywords


COVID-19; Novel Coronavirus; Airborne Infection; Indoor Spaces.

References


C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 395-497. doi:10.1016/S0140-6736(20)30183-5.

P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang, W. Zhang, H. Si, Y. Zhu, B. Li, C. Huang, H. Chen, J. Chen, Y. Luo, H. Guo, R. Jiang, M. Liu, Y. Chen, X. Shen, X. Wang, X. Zheng, K. Zhao, Q. Chen, F. Deng, L. Liu, B. Yan, F. Zhan, Y. Wang, G. Xiao, and Z. Shi, (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579(7798), 270–273. doi:10.1038/s41586-020-2012-7.

N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao, and W. Tan, (2020). A novel coronavirus from patients with pneumonia in China, 2019, New England Journal of Medicine, 382(8), 727–733. doi:10.1056/nejmoa2001017.

C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, T. Zimmer, V. Thiel, C. Janke, W. Guggemos, M. Seilmaier, C. Drosten, P. Vollmar, K. Zwirglmaier, S. Zange, R. W"olfel, M. Hoelscher, (2020). Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany, New England Journal of Medicine, 382(10), 970–971. doi:10.1056/nejmc2001468.

N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, New England Journal of Medicine, 382(16), 1564–1567. doi:10.1056/nejmc2004973.

S. W. X. Ong, Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, and K. Marimuthu, (2020). Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient, JAMA, 323(16), 1610. doi:10.1001/jama.2020.322.

J. L. Santarpia, D. N. Rivera, V. Herrera, M. J. Morwitzer, H. Creager, G. W. Santarpia, K. K. Crown, D. M. Brett-Major, E. Schnaubelt, M. J. Broadhurst, J. V. Lawler, St. P. Reid, and J. J. Lowe, (2020). Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center, medRxiv preprint doi:10.1101/2020.03.23.20039446.

Y. Liu, Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, X. Liu, K. Xu, K.-f. Ho, H. Kan, Q. Fu, and K. Lan, (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals, Nature, 582(7813), 557–560. doi:10.1038/s41586-020-2271-3.

Z.-D. Guo, Z.-Y. Wang, S.-F. Zhang, X. Li, L. Li, C. Li, Y. Cui, R.-B. Fu, Y.-Z. Dong, X.-Y. Chi, M.-Y. Zhang, K. Liu, C. Cao, B. Liu, K. Zhang, Y.-W. Gao, B. Lu, and W. Chen, (2020). Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, Emerging Infectious Diseases, 26(7), 1583–1591. doi:10.3201/eid2607.200885.

SimScale - CFD, FEA, Thermal Simulation and CAE, Available Online: https://www.simscale.com (Accessed on 25 August 2020).

Shiu, E. Y. C., Leung, N. H. L., & Cowling, B. J. (2019). Controversy around airborne versus droplet transmission of respiratory viruses. Current Opinion in Infectious Diseases, 32(4), 372–379. doi:10.1097/qco.0000000000000563.

Woo, P. C. Y., Huang, Y., Lau, S. K. P., & Yuen, K.-Y. (2010). Coronavirus Genomics and Bioinformatics Analysis. Viruses, 2(8), 1804–1820. doi:10.3390/v2081803.

Einarsson, J., & Mehlig, B. (2017). Spherical particle sedimenting in weakly viscoelastic shear flow. Physical Review Fluids, 2(6). doi:10.1103/physrevfluids.2.063301.

Wells, W. F. (1934). On Air-Borne Infection: Study Ii. Droplets and Droplet Nuclei. American journal of Epidemiology, 20(3), 611-618.

Liu, F., Qian, H., Zheng, X., Song, J., Cao, G., & Liu, Z. (2019). Evaporation and dispersion of exhaled droplets in stratified environment. IOP Conference Series: Materials Science and Engineering, 609, 042059. doi:10.1088/1757-899x/609/4/042059.

Duguid, J. P. “The Size and the Duration of Air-Carriage of Respiratory Droplets and Droplet-Nuclei.†Epidemiology and Infection 44, no. 6 (September 1946): 471–479. doi:10.1017/s0022172400019288.

Gralton, J., Tovey, E., McLaws, M.-L., & Rawlinson, W. D. (2011). The role of particle size in aerosolised pathogen transmission: A review. Journal of Infection, 62(1), 1–13. doi:10.1016/j.jinf.2010.11.010.

Yang, W., Elankumaran, S., & Marr, L. C. (2011). Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. Journal of the Royal Society Interface, 8(61), 1176–1184. doi:10.1098/rsif.2010.0686.

Yezli, S., & Otter, J. A. (2011). Minimum Infective Dose of the Major Human Respiratory and Enteric Viruses Transmitted Through Food and the Environment. Food and Environmental Virology, 3(1), 1–30. doi:10.1007/s12560-011-9056-7.

Nikitin, N., Petrova, E., Trifonova, E., & Karpova, O. (2014). Influenza Virus Aerosols in the Air and Their Infectiousness. Advances in Virology, 2014, 1–6. doi:10.1155/2014/859090.

Bourouiba, L., Dehandschoewercker, E., & Bush, J. W. M. (2014). Violent expiratory events: on coughing and sneezing. Journal of Fluid Mechanics, 745, 537–563. doi:10.1017/jfm.2014.88.

Scharfman, B. E., Techet, A. H., Bush, J. W. M., & Bourouiba, L. (2016). Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Experiments in Fluids, 57(2). doi:10.1007/s00348-015-2078-4.

Bourouiba L., (2020). Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19, JAMA 323, 1837. doi:10.1001/jama.2020.4756.

H. C. Yu, K. W. Mui, L. T. Wong, and H. S. Chu, (2016). Ventilation of general hospital wards for mitigating infection risks of three kinds of viruses including Middle East respiratory syndrome coronavirus Indoor and Built Environment 26, 514. doi:10.1177/1420326X16631596.


Full Text: PDF

DOI: 10.28991/SciMedJ-2020-02-SI-5

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Luis Alfredo Anchordoqui, Eugene Chudnovsky