Convalescent Plasma Therapy and its Century-Old Untapped Potential for COVID-19

Samahir Tariq Khan, Sajjad Ali, Nisha Lohana

Abstract


Background: The COVID-19 virus, in terms of pathogenesis and disease spectrum, resembles its predecessor viral strains which caused outbreaks of SARS and MERs. Due to unavailability of approved treatment protocols, healthcare workers initiated treatment of COVID-19 patients with convalescent plasma therapy. Objective: To appraise similarities between the three Coronaviruses and deduce the effectiveness of CP therapy based on exploration of its efficacy in the SARS and MERS outbreaks. Analysis: A narrative review of case reports, randomised controlled trials and meta-analysis studies, on use of CP therapy in SARs and MERS, was conducted. Studies evaluated for the purpose of this review were added through search engines of PubMed Central and Google Scholar. Results: We concluded that CP therapy had been able to play pivotal roles in treating critically-ill SARS and MERS patients. The risks of unintended immunological responses among other factors, hindering CP Therapy’s approval from drug administration authorities, were weighed against favourable chanisms, such as hypercoagulability, that support its use in COVID-19 patients. Conclusion: Findings collected from these studies steered our path to theorize the possibility of reducing mortality with convalescent plasma therapy and support our rallying efforts for enlisting this in the official treatment protocol of COVID-19.

 

Doi: 10.28991/SciMedJ-2020-0204-6

Full Text: PDF


Keywords


COVID-19; Convalescent Plasma Therapy; Transfusion; Coronavirus; Microbiology.

References


Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods Mol Biol, 1282, 1.

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., . . . Zhu, N. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565-574.

Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol, 92(4), 418-423.

Organization, W. H. (2020c, 2020/5/7). WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/

Keller, M. A., & Stiehm, E. R. (2000). Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev, 13(4), 602-614.

Rajam, G., Sampson, J., M Carlone, G., & W Ades, E. (2010). An augmented passive immune therapy to treat fulminant bacterial infections. Recent Pat Antiinfect Drug Discov, 5(2), 157-167.

Virdi, V., & Depicker, A. (2013). Role of plant expression systems in antibody production for passive immunization. Int J Dev Biol, 57(6-7-8), 587-593.

Burnouf, T., & Seghatchian, J. (2014). Ebola virus convalescent blood products: where we are now and where we may need to go. Transfus Apher Sci, 51(2), 120-125.

Manohar, A., Ahuja, J., & Crane, J. K. (2015). Immunotherapy for infectious diseases: Past, present, and future. Immunol Invest, 44(8), 731-737.

Agency, A. (2020). Convalescent plasma therapy useful in treating COVID-19. Available online: https://www.aa.com.tr/en/health/convalescent-plasma-therapy-useful-in-treating-covid-19/1797975

Stöppler, M. C. (2020). Apheresis (Hemapheresis, Pheresis). Available online: https://www.medicinenet.com/hemapheresis/article.htm#what_are_some_possible_complications_of_apheresis

Dodd, R. Y. (2012). Emerging pathogens and their implications for the blood supply and transfusion transmitted infections. Br J Haematol, 159(2), 135-142.

Luke, T. C., Casadevall, A., Watowich, S. J., Hoffman, S. L., Beigel, J. H., & Burgess, T. H. (2010). Hark back: passive immunotherapy for influenza and other serious infections. Crit Care Med, 38, e66-e73.

Bogardus, F. (1919). Influenza Pneumonia Treated by Blood Transfusion. NY Med J, 12(6).

Carlyle, P. (1919). Injection of whole blood in influenza. Br Med J, 1, 698.

Francis, F., Hall, M., & Gaines, A. (1920). Early use of convalescent serum in influenza. Mil Surg, 47, 177-179.

Lakartidnin, S. (1920). Treatment of influenza pneumonia with serum from convalescents. Svenska Lakartidnin, 18, 385-399.

Miller, O., & McConnell, W. (1919). Report of influenza treated with serum from recovered cases. Ky Med J, 17, 218-219.

Redden, W. R. (1919). Treatment of influenza-pneumonia by use of convalescent human serum. Boston Med Surg J, 181(24), 688-691.

Bakr Nour, M. G., Michaels, M., Reyes, J., Tzakis, A., Gartner, J. C., McLoughlin, L., & Starzl, T. E. (1993). Parvovirus B19 infection in pediatric transplant patients. Transplantation, 56(4), 835.

Beigel, J. H., & Luke, T. C. (2012). A study in scarlet-convalescent plasma for severe influenza. Crit Care Med, 40(3), 1027.

Group, W. M.-C. R. (2013). State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans. PLoS Curr, 5.

Hemming, V. G. (2001). Use of intravenous immunoglobulins for prophylaxis or treatment of infectious diseases. Clin Diagn Lab Immunol, 8(5), 859-863.

Hui, D. S., & Lee, N. (2013). Adjunctive therapies and immunomodulating agents for severe influenza. Influenza Other Resp Viruses, 7, 52-59.

Kong, L., & Zhou, B. (2006). Successful treatment of avian influenza with convalescent plasma. Hong Kong Med J, 12(6), 489.

Leider, J. P., Brunker, P. A., & Ness, P. M. (2010). Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion, 50(6), 1384-1398.

Young, M. K., Nimmo, G. R., Cripps, A. W., & Jones, M. A. (2014). Postâ€exposure passive immunisation for preventing measles. Cochrane Database Syst Rev(4).

Zhou, B., Zhong, N., & Guan, Y. (2007). Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med, 357(14), 1450-1451.

Zingher, A., & Mortimer, P. (2005). Convalescent whole blood, plasma and serum in the prophylaxis of measles. Rev Med Virol, 15(6), 407.

Wong, V., Dai, D., Wu, A., & Sung, J. (2003). Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J, 9(3), 199-201.

Mozdzanowska, K., Furchner, M., Washko, G., Mozdzanowski, J., & Gerhard, W. (1997). A pulmonary influenza virus infection in SCID mice can be cured by treatment with hemagglutinin-specific antibodies that display very low virus-neutralizing activity in vitro. J Virol, 71(6), 4347-4355.

Prince, G. A., Hemming, V. G., Horswood, R. L., Baron, P. A., & Chanock, R. M. (1987). Effectiveness of topically administered neutralizing antibodies in experimental immunotherapy of respiratory syncytial virus infection in cotton rats. J Virol, 61(6), 1851-1854.

Simmons, C. P., Bernasconi, N. L., Suguitan Jr, A. L., Mills, K., Ward, J. M., Chau, N. V. V., . . . Farrar, J. (2007). Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med, 4(5).

McGuire, L., & Redden, W. (1918). The use of convalescent human serum in influenza pneumonia-a preliminary report. Am J Public Health, 8(10), 741.

Gunn, W. (1932). Convalescent serum in prophylaxis of measles, chicken-pox, and mumps. Br Med J, 1(3708), 183.

Gundersen, T. (1935). Convalescent blood for herpes zoster. Trans Am Ophthalmol Soc, 33, 508.

Jensen, C. (1935). The 1934 epidemic of poliomyelitis in Denmark. Preliminary report on the epidemiology, clinical features and convalescent serum therapy. Proc R Soc Med, 28(8), 1007-1026.

Nabarro, D., & Signy, A. (1931). Convalescent serum in prophylaxis of measles. Br Med J, 1(3652), 12.

Organization, W. H. (2014a). Experimental therapies: growing interest in the use of whole blood or plasma from recovered Ebola patients (convalescent therapies). Media centre. Available online: https://www.who.int/mediacentre/news/ebola/26-september-2014/en/

Organization, W. H. (2014b). Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks: interim guidance for national health authorities and blood transfusion services.

Winkler AM, & SA, K. (2015). The use of convalescent plasma to treat emerging infectious diseases: focus on Ebola virus disease. Curr Opin Hematol, 22(6), 521-526.

Enria, D., Fernandez, N., Briggiler, A., Levis, S., & Maiztegui, J. (1984). Importance of dose of neutralising antibodies in treatment of Argentine haemorrhagic fever with immune plasma. Lancet, 324(8397), 255-256.

Enria, D. A., Briggiler, A. M., & Sánchez, Z. (2008). Treatment of Argentine hemorrhagic fever. Antivir Res, 78(1), 132-139.

Enria, D. A., & Maiztegui, J. I. (1994). Antiviral treatment of Argentine hemorrhagic fever. Antivir Res, 23(1), 23-31.

Maiztegui, J., Fernandez, N., & De Damilano, A. (1979). Efficacy of immune plasma in treatment of Argentine haemorrhagic fever and association between treatment and a late neurological syndrome. Lancet, 314(8154), 1216-1217.

Ruggiero, H., Pérez, F. I., Milani, H., Barri, A., Val, A., Maglio, F., . . . Tallone, J. (1986). Treatment of Argentine hemorrhagic fever with convalescent's plasma. 4433 cases. Presse Med, 15(45), 2239-2242.

Jahrling, P. B., Frame, J. D., Rhoderick, J. B., & Monson, M. H. (1985). Endemic Lassa fever in Liberia. IV. Selection of optimally effective plasma for treatment by passive immunization. Trans R Soc Trop Med Hyg, 79(3), 380-384.

Organization, W. H. (2003a). Consensus document on the epidemiology of severe acute respiratory syndrome (SARS).

Organization, W. H. (2003c). Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available online: https://www.who.int/csr/sars/country/table2004_04_21/en/

Organization, W. H. (2003b). Severe acute respiratory syndrome (SARS): report by the Secretariat. Geneva: WHO Executive Board. EB113/33. Available online: https://apps.who.int/iris/handle/10665/20038

Cheng, Y., Wong, R., Soo, Y., Wong, W., Lee, C., Ng, M., . . . Cheng, G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis, 24(1), 44-46.

Yeh, K.-M., Chiueh, T.-S., Siu, L., Lin, J.-C., Chan, P. K., Peng, M.-Y., . . . Perng, C.-L. (2005). Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother, 56(5), 919-922.

Wong, V. W., Dai, D., Wu, A. K., & Sung, J. J. (2003). Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J, 9(3), 199-201.

Kong, L. (2003). Severe acute respiratory syndrome (SARS). Transfus Apher Sci, 29(1), 101. doi:10.1016/s1473-0502(03)00109-5.

Nie, Q. H., Luo, X. D., & Hui, W. L. (2003). Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. World J Gastroenterol, 9(6), 1139-1143. doi:10.3748/wjg.v9.i6.1139.

Alraddadi, B. M., Watson, J. T., Almarashi, A., Abedi, G. R., Turkistani, A., Sadran, M., . . . Madani, T. A. (2016). Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014. Emerg Infect Dis, 22(1), 49-55. doi:10.3201/eid2201.151340.

Organization, W. H. (2020b). Epidemic and pandemic-prone diseases. Available online: http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-january-2020.html

Chan, K. H., Chan, J. F., Tse, H., Chen, H., Lau, C. C., Cai, J. P., . . . Yuen, K. Y. (2013). Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J Infect, 67(2), 130-140. doi:10.1016/j.jinf.2013.03.015.

Perera, R. A., Wang, P., Gomaa, M. R., El-Shesheny, R., Kandeil, A., Bagato, O., . . . Kayali, G. (2013). Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill, 18(36), pii=20574. doi:10.2807/1560-7917.es2013.18.36.20574.

Reusken, C. B., Haagmans, B. L., Müller, M. A., Gutierrez, C., Godeke, G. J., Meyer, B., . . . Koopmans, M. P. (2013). Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis, 13(10), 859-866. doi:10.1016/s1473-3099(13)70164-6.

Ying, T., Li, H., Lu, L., Dimitrov, D. S., & Jiang, S. (2015). Development of human neutralizing monoclonal antibodies for prevention and therapy of MERS-CoV infections. Microbes Infect, 17(2), 142-148. doi:10.1016/j.micinf.2014.11.008

Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., . . . Lanzavecchia, A. (2015). Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc Natl Acad Sci U S A, 112(33), 10473-10478. doi:10.1073/pnas.1510199112.

Ko, J. H., Seok, H., Cho, S. Y., Ha, Y. E., Baek, J. Y., Kim, S. H., . . . Peck, K. R. (2018). Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther, 23(7), 617-622. doi:10.3851/imp3243.

Ko, J. H., Müller, M. A., Seok, H., Park, G. E., Lee, J. Y., Cho, S. Y., . . . Peck, K. R. (2017a). Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity. Diagn Microbiol Infect Dis, 89(2), 106-111. doi:10.1016/j.diagmicrobio.2017.07.006.

Ko, J. H., Park, G. E., Lee, J. Y., Lee, J. Y., Cho, S. Y., Ha, Y. E., . . . Peck, K. R. (2016). Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. J Infect, 73(5), 468-475. doi:10.1016/j.jinf.2016.08.005.

Ko, J. H., Müller, M. A., Seok, H., Park, G. E., Lee, J. Y., Cho, S. Y., . . . Peck, K. R. (2017b). Suggested new breakpoints of anti-MERS-CoV antibody ELISA titers: performance analysis of serologic tests. Eur J Clin Microbiol Infect Dis, 36(11), 2179-2186. doi:10.1007/s10096-017-3043-3.

Arabi, Y. M., Hajeer, A. H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., . . . Alahmadi, M. (2016). Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection, Saudi Arabia. Emerg Infect Dis, 22(9), 1554-1561. doi:10.3201/eid2209.151164.

Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J. K., Cleary, P., Khaw, F. M., Lim, W. S., . . . Beck, C. R. (2015). The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis, 211(1), 80-90. doi:10.1093/infdis/jiu396.

Arabi, Y., Balkhy, H., Hajeer, A. H., Bouchama, A., Hayden, F. G., Al-Omari, A., . . . Fowler, R. (2015). Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus, 4, 709. doi:10.1186/s40064-015-1490-9.

Casadevall, A., & Pirofski, L. A. (2020). The convalescent sera option for containing COVID-19. J Clin Invest, 130(4), 1545-1548. doi:10.1172/jci138003.

Kraft, C. S., Hewlett, A. L., Koepsell, S., Winkler, A. M., Kratochvil, C. J., Larson, L., . . . Ribner, B. S. (2015). The Use of TKM-100802 and Convalescent Plasma in 2 Patients with Ebola Virus Disease in the United States. Clin Infect Dis, 61(4), 496-502. doi:10.1093/cid/civ334.

Chen, L., Xiong, J., Bao, L., & Shi, Y. (2020). Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis, 20(4), 398.

Zhang, L., & Liu, Y. (2020). Potential interventions for novel coronavirus in China: A systematic review. J Med Virol, 92(5), 479-490. doi:10.1002/jmv.25707.

Organization, W. H. (2020a). Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020.

Xinhua. (2020). China puts 245 COVID-19 patients on convalescent plasma therapy. Available online: http://www.xinhuanet.com/english/2020-02/28/c_138828177.htm

Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., . . . Hu, Y. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A, 117(17), 9490-9496.

Food, U., & Administration, D. (2020). Investigational COVID-19 Convalescent Plasma-Emergency INDs. Available online: http://natap.org/2020/COVID/032320_39.htm


Full Text: PDF

DOI: 10.28991/SciMedJ-2020-0204-6

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Sajjad Ali