Statistical Characteristics of Flow Field through Open and Semi-Closed Bileaflet Mechanical Heart Valve

Oleksandr Voskoboinyk, Lidiia Tereshchenko, Vladimir Voskoboinick, Gabriela Fernandez, Andrey Voskoboinick, Alberto Redaelli, Gianfranco Beniamino Fiore, Federico Lucherini


The formation of thrombi on the streamlined surface of the bileaflet mechanical heart valves is one of the main disadvantages of such valves. Thrombi block the valve leaflets and disrupt the cardiovascular system. Diagnosis of thrombosis of the bileaflet mechanical heart valves is relevant and requires the creation of effective diagnostic tools. Hydroacoustic registration of the heart noise is one of the methods for diagnosing the operation of a mechanical heart valve. The purpose of the research is to determine the statistical characteristics of the vortex and jet flow through the open and semi-closed bileaflet mechanical heart valve, to identify hydroacoustic differences and diagnostic signs to determine the operating conditions of the valve. Experimental studies were conducted in laboratory conditions on a model of the left atrium and left ventricle of the heart between which there was the bileaflet mechanical heart valve. Hydrodynamic noise was recorded by miniature pressure sensors, which were located downstream of the valve. The vortex and jet flow behind the prosthetic heart valve were non-linear, random processes and were analyzed using the methods of mathematical statistics and probability theory. The integral and spectral characteristics of the pressure field were obtained and the differences in the noise levels and their spectral components near the central and side jets for the open and semi-closed mitral valve were established. It was shown that hydroacoustic measurements could be an effective basis for developing diagnostic equipment for monitoring the bileaflet mechanical heart valve operation.


Doi: 10.28991/SciMedJ-2020-0204-1

Full Text: PDF


Bileaflet Prosthetic Mitral Valve; Jet Flow; Vortex Structures; Wall Pressure Fluctuations; Hydrodynamic Noise.


Sotiropoulos, F., Le, T. B., & Gilmanov, A. (2016). Fluid Mechanics of Heart Valves and Their Replacements. Annual Review of Fluid Mechanics, 48(1), 259–283. doi:10.1146/annurev-fluid-122414-034314.

Yoganathan, A. P., He, Z., & Casey Jones, S. (2004). Fluid Mechanics of Heart Valves. Annual Review of Biomedical Engineering, 6(1), 331–362. doi:10.1146/annurev.bioeng.6.040803.140111.

Zakaria, M. S., Ismail, F., Tamagawa, M., Aziz, A. F. A., Wiriadidjaja, S., Basri, A. A., & Ahmad, K. A. (2017). Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Medical & Biological Engineering & Computing, 55(9), 1519–1548. doi:10.1007/s11517-017-1688-9.

Reul, H., Talukder, N., & Mu¨ller, E. W. (1981). Fluid mechanics of the natural mitral valve. Journal of Biomechanics, 14(5), 361–372. doi:10.1016/0021-9290(81)90046-4.

Sacks, M. S., David Merryman, W., & Schmidt, D. E. (2009). On the biomechanics of heart valve function. Journal of Biomechanics, 42(12), 1804–1824. doi:10.1016/j.jbiomech.2009.05.015.

Barker, A. J., & Markl, M. (2011). Editorial. European Journal of Cardio-Thoracic Surgery, 39(6), 805–806. doi:10.1016/j.ejcts.2011.01.006.

Votta, E., Le, T. B., Stevanella, M., Fusini, L., Caiani, E. G., Redaelli, A., & Sotiropoulos, F. (2013). Toward patient-specific simulations of cardiac valves: State-of-the-art and future directions. Journal of Biomechanics, 46(2), 217–228. doi:10.1016/j.jbiomech.2012.10.026.

Mittal, R. (2018). Matters of the heart. Journal of Fluid Mechanics, 844, 1–4. doi:10.1017/jfm.2018.229.

Kheradvar, A., Groves, E. M., Simmons, C. A., Griffith, B., Alavi, S. H., Tranquillo, R., … Little, S. H. (2014). Emerging Trends in Heart Valve Engineering: Part III. Novel Technologies for Mitral Valve Repair and Replacement. Annals of Biomedical Engineering, 43(4), 858–870. doi:10.1007/s10439-014-1129-y.

Vismara, R., Pavesi, A., Votta, E., Taramasso, M., Maisano, F., & Fiore, G. B. (2011). A Pulsatile Simulator for thein Vitro Analysis of the Mitral Valve with Tri-Axial Papillary Muscle Displacement. The International Journal of Artificial Organs, 34(4), 383–391. doi:10.5301/ijao.2011.7729.

Vismara, R., Leopaldi, A. M., Piola, M., Asselta, C., Lemma, M., Antona, C., … Fiore, G. B. (2016). In vitro assessment of mitral valve function in cyclically pressurized porcine hearts. Medical Engineering & Physics, 38(4), 346–353. doi:10.1016/j.medengphy.2016.01.007.

Meschini, V., de Tullio, M. D., Querzoli, G., & Verzicco, R. (2017). Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. Journal of Fluid Mechanics, 834, 271–307. doi:10.1017/jfm.2017.725.

Dasi, L. P., Ge, L., Simon, H. A., Sotiropoulos, F., & Yoganathan, A. P. (2007). Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Physics of Fluids, 19(6), 067105. doi:10.1063/1.2743261.

Bellofiore, A., Donohue, E. M., & Quinlan, N. J. (2011). Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve. Experiments in Fluids, 51(1), 161–176. doi:10.1007/s00348-010-1038-2.

Darwish, A., Di Labbio, G., Saleh, W., Smadi, O., & Kadem, L. (2019). Experimental investigation of the flow downstream of a dysfunctional bileaflet mechanical aortic valve. Artificial Organs, 43(10). doi:10.1111/aor.13483.

Mirvakili, N., Di Labbio, G., Saleh, W., & Kadem, L. (2019). Flow characteristics in a model of a left ventricle in the presence of a dysfunctional mitral mechanical heart valve. Journal of Visualization, 23(1), 1–8. doi:10.1007/s12650-019-00611-3.

Zolfaghari, H., & Obrist, D. (2019). Absolute instability of impinging leading edge vortices in a submodel of a bileaflet mechanical heart valve. Physical Review Fluids, 4(12). doi:10.1103/physrevfluids.4.123901.

Cheng, R., Lai, Y. G., & Chandran, K. B. (2004). Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Annals of biomedical engineering, 32(11), 1471-1483. doi:10.1114/B:ABME.0000049032.51742.10.

Domenichini, F., Pedrizzetti, G., & Baccani, B. (2005). Three-dimensional filling flow into a model left ventricle. Journal of Fluid Mechanics, 539(-1), 179. doi:10.1017/s0022112005005550.

Jain, K. (2020). Efficacy of the FDA nozzle benchmark and the lattice Boltzmann method for the analysis of biomedical flows in transitional regime. Medical & Biological Engineering & Computing, 58(8), 1817–1830. doi:10.1007/s11517-020-02188-8.

Khellaf, B., & Boussad, B. (2019). Computational hemodynamic investigation of a new bileaflet mechanical heart valve. SIMULATION, 96(5), 459–469. doi:10.1177/0037549719886364.

Xu, X., Liu, T., Li, C., Zhu, L., & Li, S. (2019). A Numerical Analysis of Pressure Pulsation Characteristics Induced by Unsteady Blood Flow in a Bileaflet Mechanical Heart Valve. Processes, 7(4), 232. doi:10.3390/pr7040232.

Zbavitel, J., & Fialová, S. (2019). A numerical study of hemodynamic effects on the bileaflet mechanical heart valve. EPJ Web of Conferences, 213, 02103. doi:10.1051/epjconf/201921302103.

Redaelli, A., Bothorel, H., Votta, E., Soncini, M., Morbiducci, U., Del Gaudio, C., ... & Grigioni, M. (2004). 3-D simulation of the St. Jude medical bileaflet valve opening process: fluid-structure interaction study and experimental validation. Journal of Heart Valve Disease, 13(5), 804-813.

Fiedler, A. G., & Tolis, G. (2018). Surgical Treatment of Valvular Heart Disease: Overview of Mechanical and Tissue Prostheses, Advantages, Disadvantages, and Implications for Clinical Use. Current Treatment Options in Cardiovascular Medicine, 20(1). doi:10.1007/s11936-018-0601-7.

Voskoboinick, V., Kornev, N., & Turnow, J. (2012). Study of Near Wall Coherent Flow Structures on Dimpled Surfaces Using Unsteady Pressure Measurements. Flow, Turbulence and Combustion, 90(4), 709–722. doi:10.1007/s10494-012-9433-9.

Voskoboinick, V., Voskoboinick, A., Areshkovych, O., & Voskoboinyk, O. (2016). Pressure fluctuations on the scour surface before prismatic pier. Scour and Erosion. doi:10.1201/9781315375045-115.

Jun, B. H., Saikrishnan, N., & Yoganathan, A. P. (2013). Micro Particle Image Velocimetry Measurements of Steady Diastolic Leakage Flow in the Hinge of a St. Jude Medical® Regent™ Mechanical Heart Valve. Annals of Biomedical Engineering, 42(3), 526–540. doi:10.1007/s10439-013-0919-y.

Hedayat, M., & Borazjani, I. (2019). Comparison of platelet activation through hinge vs bulk flow in bileaflet mechanical heart valves. Journal of Biomechanics, 83, 280–290. doi:10.1016/j.jbiomech.2018.12.003.

Sacks, M. S., Schoen, F. J., & Mayer, J. E. (2009). Bioengineering Challenges for Heart Valve Tissue Engineering. Annual Review of Biomedical Engineering, 11(1), 289–313. doi:10.1146/annurev-bioeng-061008-124903.

Smood, B., Hara, H., Cleveland, D. C., & Cooper, D. K. C. (2019). In Search of the Ideal Valve: Optimizing Genetic Modifications to Prevent Bioprosthetic Degeneration. The Annals of Thoracic Surgery, 108(2), 624–635. doi:10.1016/j.athoracsur.2019.01.054.

Poli, D., Antonucci, E., Pengo, V., Migliaccio, L., Testa, S., Lodigiani, C., … Palareti, G. (2018). Mechanical prosthetic heart valves: Quality of anticoagulation and thromboembolic risk. The observational multicenter PLECTRUM study. International Journal of Cardiology, 267, 68–73. doi:10.1016/j.ijcard.2018.04.042.

H. Sadoon, and A. L. Bassam (2018). Incidence of Major Bleeding In Patients with Mechanical Heart Valve and Warfarin; a One Year Study. International Journal of Advanced Research, 6(2), 622–624. doi:10.21474/ijar01/6480.

Li, W., Gao, Z., Jin, Z., & Qian, J. (2020). Transient Study of Flow and Cavitation Inside a Bileaflet Mechanical Heart Valve. Applied Sciences, 10(7), 2548. doi:10.3390/app10072548.

Kheradvar, A., & Pedrizzetti, G. (2011). Vortex Formation in the Heart. Vortex Formation in the Cardiovascular System, 45–79. doi:10.1007/978-1-4471-2288-3_3.

Ge, L., Dasi, L. P., Sotiropoulos, F., & Yoganathan, A. P. (2007). Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses. Annals of Biomedical Engineering, 36(2), 276–297. doi:10.1007/s10439-007-9411-x.

Butchart, E. G. (2008). Antithrombotic management in patients with prosthetic valves: a comparison of American and European guidelines. Heart, 95(5), 430–436. doi:10.1136/hrt.2007.134726.

A. Wilke, C. M. Wende, M. Horst, and D. Steverding, (2011). Thrombosis of A Prosthetic Mitral Valve After Withdrawal of Phenprocoumon Therapy. Cardiology Research. doi:10.4021/cr124w.

Qian, J., Gao, Z., Hou, C., & Jin, Z. (2019). A comprehensive review of cavitation in valves: mechanical heart valves and control valves. Bio-Design and Manufacturing, 2(2), 119–136. doi:10.1007/s42242-019-00040-z.

Jin, Z., Qiu, C., Jiang, C., Wu, J., & Qian, J. (2020). Effect of valve core shapes on cavitation flow through a sleeve regulating valve. Journal of Zhejiang University-SCIENCE A, 21(1), 1–14. doi:10.1631/jzus.a1900528.

Lee, C. S., Chandran, K. B., & Chen, L. D. (1996). Cavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect. Journal of Biomechanical Engineering, 118(1), 97–105. doi:10.1115/1.2795951.

Voskoboinick, V. A., Grinchenko, V. T., & Makarenkov, A. P. (2005). Pseudo-Sound behind an Obstacle on a Cylinder in Axial Flow. International Journal of Fluid Mechanics Research, 32(4), 488–510. doi:10.1615/interjfluidmechres.v32.i4.60.

Williams, J. E. F. (1969). Hydrodynamic Noise. Annual Review of Fluid Mechanics, 1(1), 197–222. doi:10.1146/annurev.fl.01.010169.001213.

Voskoboinick, V. A., Grinchenko, V. T., & Makarenkov, A. P. (2003). Correlation Characteristics of a Wall Pressure Fluctuation Field in a Turbulent Boundary Layer Induced by a Longitudinal Flow along a Flexible Extended Cylinder. International Journal of Fluid Mechanics Research, 30(6), 644–650. doi:10.1615/interjfluidmechres.v30.i6.70.

Voskoboinick, V., Voskoboinick, A., Voskoboinyk, O., & Turick, V. (2020). Dimple Generators of Longitudinal Vortex Structures. Boundary Layer Flows - Theory, Applications and Numerical Methods. doi:10.5772/intechopen.83518.

Voskoboinick, V. A., Turick, V. N., Voskoboinyk, O. A., Voskoboinick, A. V., & Tereshchenko, I. A. (2018). Influence of the Deep Spherical Dimple on the Pressure Field under the Turbulent Boundary Layer. Advances in Computer Science for Engineering and Education, 23–32. doi:10.1007/978-3-319-91008-6_3.

Voskoboinick, V. A., & Makarenkov, A. P. (2004). Spectral Characteristics of the Pseudosonic Component of Hydrodynamical Noise In a Longitudinal Flow Around a Flexible Cylinder. International Journal of Fluid Mechanics Research, 31(1), 87–100. doi:10.1615/interjfluidmechres.v31.i1.70.

Vinogradnyi, G. P., Voskoboinik, V. A., Grinchenko, V. T., & Makarenkov, A. P. (1990). Spectral and correlation characteristics of the turbulent boundary layer on an extended flexible cylinder. Fluid Dynamics, 24(5), 695–700. doi:10.1007/bf01051721.

Voskoboinick, V. A., Voskoboinick, A. V., Stepanovitch, V., Redaelli, A., Lucherini, F., Fiore, G. B., … Chertov, O. (2019). Noise Of Open And Semi-Closed Bileaflet Prosthetic Mitral Valve. International Journal of Fluid Mechanics Research, 46(4), 337–348. doi:10.1615/interjfluidmechres.v46.i4.50.

V. Voskoboinick, O. Voskoboinyk, and L. Tereshchenko, (2020) “Noise of bileaflet mechanical mitral valve in non-Newtonian fluid”, Abstracts of the International scientific- practical conference “Theoretical Foundations of Modern Science and Practice”, Melbourne, Australia, 117-122.

Voskoboinick, V., Voskoboinick, A., Voskoboinick, A., Stepanovich, V., … Hyzha, I. (2019). Vortex motion inside the hole of a complex geometry. Hydrodynamics and Acoustics, 1(3), 284–301. doi:10.15407/jha2018.03.284.

Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures (Vol. 729). John Wiley & Sons.

Voskoboinick, V. A., Redaelli, A., Chertov, O. R., Fiore, B., Voskoboinick, A. V., Rudnitckii, A. G., … Lucherini, F. (2017). Effect of Fluid Viscosity on Noise of Bileaflet Prosthetic Heart Valve. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 0(5), 41–50. doi:10.20535/1810-0546.2017.5.112097.

Full Text: PDF

DOI: 10.28991/SciMedJ-2020-0204-1


  • There are currently no refbacks.

Copyright (c) 2020 Lidiia Tereshchenko, Vladimir Voskoboinick, Oleksandr Voskoboinyk, Gabriela Fernandez, Alberto Redaelli, Gianfranco Beniamino Fiore, Federico Lucherini