The Possible Molecular Mechanism of SARS-CoV-2 Main Protease: New Structural Insights from Computational Methods

Alvea Tasneem, Gyan Prakash Rai, Saima Reyaz, Hridoy R. Bairagya

Abstract


Main protease (Mpro) is one of the key enzymes in the life cycle of SARS-CoV-2 that plays a pivotal role in mediating viral replication, transcription, and makes it an attractive drug target for this virus.  The catalytic site of this enzyme comprises of a dyad His41 and Cys145 and lacks the third catalytic residue, which is replaced by a stable water molecule (W). The computational structural analysis on crystal data for Mpro protein suggests that W1, W2, His163, and Tyr161 may also play a vital role in the activity of this enzyme and they may act as catalytic partners along with Cys(145)-His(41) catalytic dyad. The thiolate–imidazolium ion-pair between Cys145 (-SH---NE2-) His41 and Cys145 (-SH---NE2-) His163 have been stabilized by W1 (with W2) and Tyr161, respectively. Therefore, unique interactions of W2---W1---ND1-His41-NE2---SH-Cys145 or Cys145-SH---NE2-His163-ND1---OH-Tyr161 in Mpro serve as an excellent drug target for this enzyme and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site, its shape, and complementarities. Our computational hypothesis suggests two essential clues that may be implemented to design a new inhibitor for Mpro protein. The strategies are: (i) ligand should be occupied either W1 or W2 or both of these position to displace these water molecules from the catalytic region, and (ii) ligand should be made H-bonds with Cys145 (-SH), His41 (NE2/ND1) and His163(NE2) to inhibit Mpro. The results from this computational study could be of interest to the experimental community and also provide a testable hypothesis for experimental validation.

 

Doi: 10.28991/SciMedJ-2020-02-SI-11

Full Text: PDF


Keywords


Catalytic Mechanism of Mpro Protein; Role of His163, Tyr161 and Water Molecules; Inhibitor Binding Strategies of Mpro; SARS-CoV-2.

References


Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X. & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506. doi:10.1016/S0140-6736(20)30183-5.

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in different types of clinical specimens. Jama, 323(18), 1843-1844. doi:10.1001/jama.2020.3786.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R. & Niu, P. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. doi:10.1056/NEJMoa2001017.

Center for Systems Science and Engineering (CSSE) at JHU. COVID-19 Dashboard. Available online: https://coronavirus.jhu.edu/data/mortality (accessed on June 2020).

De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8), 523. doi:10.1038/nrmicro.2016.81.

Munster, V. J., Koopmans, M., van Doremalen, N., van Riel, D., & de Wit, E. (2020). A novel coronavirus emerging in China-key questions for impact assessment. New England Journal of Medicine, 382(8), 692-694. doi:10.1056/NEJMp2000929.

Banerjee, R., Perera, L., & Tillekeratne, L. M. V. (2020). Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today. doi:10.1016/j.drudis.2020.12.005.

Sisay, M. (2020). 3CLpro inhibitors as a potential therapeutic option for COVID-19: Available evidence and ongoing clinical trials. Pharmacological Research, 156, 104779. doi:10.1016/j.phrs.2020.104779.

Ghazy, R. M., Almaghraby, A., Shaaban, R., Kamal, A., Beshir, H., Moursi, A., … Taha, S. H. N. (2020). A systematic review and meta-analysis on chloroquine and hydroxychloroquine as monotherapy or combined with azithromycin in COVID-19 treatment. Scientific Reports, 10(1). doi:10.1038/s41598-020-77748-x.

Świderek, K. & Moliner, V., 2020. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/MM computational methods. Chemical Science, 11(39), 10626–10630. doi:10.1039/d0sc02823a.

Ramos-Guzmán, C. A., Ruiz-Pernía, J. J., & Tuñón, I. (2020). Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods. ACS Catalysis, 10(21), 12544–12554. doi:10.1021/acscatal.0c03420.

Fehr, A. R., & Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. In Coronaviruses (pp. 1-23). Humana Press, New York, NY. doi:10.1007/978-1-4939-2438-7_1.

Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011-1033. doi:10.3390/v4061011.

Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 300(5626), 1763-1767. doi:10.1126/science.1085658.

Bzówka, M., Mitusinska, K., Raczynska, A., Samol, A., Tuszynski, J. A., & Góra, A. (2020). Molecular Dynamics Simulations Indicate the COVID-19 Mpro Is Not a Viable Target for Small-Molecule Inhibitors Design. bioRxiv. doi:10.1101/2020.02.27.968008.

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L. & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. doi:10.1038/s41586-020-2180-5.

Polgár, L. (2005). The catalytic triad of serine peptidases. Cellular and molecular life sciences CMLS, 62(19-20), 2161-2172. doi:10.1007/s00018-005-5160-x.

Banerjee, A., Bairagya, H. R., Mukhopadhyay, B. P., Nandi, T. K., & Mishra, D. K. (2013). Conserved water mediated H-bonding dynamics of Ser117 and Thr119 residues in human transthyretin–thyroxin complexation: Inhibitor modeling study through docking and molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 44, 70–80. doi:10.1016/j.jmgm.2013.04.010.

Chakrabarti, B., Bairagya, H. R., Mallik, P., Mukhopadhyay, B. P., & Bera, A. K. (2011). An Insight to Conserved Water Molecular Dynamics of Catalytic and Structural Zn+2ions in Matrix Metalloproteinase 13 of Human. Journal of Biomolecular Structure and Dynamics, 28(4), 503–516. doi:10.1080/07391102.2011.10508591.

Bairagya, H.R., Tasneem, A., Rai, G.P., & Reyaz, S. (2020). Structural and Dynamical Impact of Water Molecules at Substrate-or Product-Binding Sites in Human GMPR Enzyme: A Study by Molecular Dynamics Simulations. The Journal of Physical Chemistry B. doi:10.1021/acs.jpcb.0c08818.

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412. doi:10.1126/science.abb3405.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I.N. & Bourne, P. E. (2000). The protein data bank. Nucleic acids research, 28(1), 235-242. doi:10.1093/nar/28.1.235.

Guex, N., Diemand, A., Peitsch, M. C., & Schwede, T. (2000). SwissPDBViewer program. Glaxo Smith Kline R&D, Brentford.

Huang, J., & MacKerell Jr, A. D. (2013). CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data. Journal of computational chemistry, 34(25), 2135-2145. doi:10.1002/jcc.23354.

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5.

Booth, A. D. (1947). Application of the method of steepest descents to X-ray structure analysis. Nature, 160(4058), 196-196. doi:10.1038/160196a0.

Sumathi, K., Ananthalakshmi, P., Roshan, M. M., & Sekar, K. (2006). 3dSS: 3D structural superposition. Nucleic Acids Research, 34(suppl_2), W128-W132. doi:10.1093/nar/gkl036.

Bairagya, H. R., Mishra, D. K., Mukhopadhyay, B. P., & Sekar, K. (2014). Conserved water-mediated recognition and dynamics of NAD+ (carboxamide group) to hIMPDH enzyme: water mimic approach toward the design of isoform-selective inhibitor. Journal of Biomolecular Structure and Dynamics, 32(8), 1248-1262. doi:10.1080/07391102.2013.812982.

Ogata, K., & Wodak, S. J. (2002). Conserved water molecules in MHC class-I molecules and their putative structural and functional roles. Protein engineering, 15(8), 697-705. doi:10.1093/protein/15.8.697.

Mustata, G., & Briggs, J. M. (2004). Cluster analysis of water molecules in alanine racemase and their putative structural role. Protein Engineering Design and Selection, 17(3), 223-234. doi:10.1093/protein/gzh033.

Nandi, T. K., Bairagya, H. R., Mukhopadhyay, B. P., Sekar, K., Sukul, D., & Bera, A. K. (2009). Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease. Journal of biosciences, 34(1), 27-34. doi:10.1007/s12038-009-0006-6.

Bairagya, H. R., & Mukhopadhyay, B. P. (2013). An insight to the dynamics of conserved water-mediated salt bridge interaction and interdomain recognition in hIMPDH isoforms. Journal of Biomolecular Structure and Dynamics, 31(7), 788–808. doi:10.1080/07391102.2012.712458.

Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H. & Gao, G. F. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences, 100(23), 13190-13195. doi:10.1073/pnas.1835675100.

A., Owen, C. D., Wild, C., Krojer, T., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of COVID-19 main protease in complex with Z45617795. doi:10.2210/pdb5r7y/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2856434899. doi:10.2210/pdb5reb/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0103016. doi:10.2210/pdb5rem/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102425. doi:10.2210/pdb5ren/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102395. doi:10.2210/pdb5reu/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102275. doi:10.2210/pdb5rew/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102287. doi:10.2210/pdb5rex/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1741969146. doi:10.2210/pdb5rf2/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1348371854. doi:10.2210/pdb5rf6/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102372. doi:10.2210/pdb5rfg/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102277. doi:10.2210/pdb5rfh/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102353. doi:10.2210/pdb5rfi/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0103067. doi:10.2210/pdb5rfj/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102575. doi:10.2210/pdb5rfk/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102539. doi:10.2210/pdb5rfm/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102868. doi:10.2210/pdb5rfn/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102972. doi:10.2210/pdb5rfo/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102169. doi:10.2210/pdb5rfr/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102432. doi:10.2210/pdb5rft/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102306. doi:10.2210/pdb5rfv/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102974. doi:10.2210/pdb5rfy/pdb.

Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102962 (Mpro-x0705). doi:10.2210/pdb5rgl/pdb.

Owen, C. D., Lukacik, P., Strain-Damerell, C. M., Douangamath, A., Powell, A. J., Fearon, D., … Walsh, M. A. (2020). SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19). doi:10.2210/pdb6y84/pdb.

Owen, C. D., Lukacik, P., Strain-Damerell, C. M., Douangamath, A., Powell, A. J., Fearon, D., … Walsh, M. A. (2020). SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19). doi:10.2210/pdb6yb7/pdb.


Full Text: PDF

DOI: 10.28991/SciMedJ-2020-02-SI-11

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Alvea Tasneem, Gyan Prakash Rai, Saima Reyaz, HRIDOY RANJAN BAIRAGYA