The Possible Molecular Mechanism of SARS-CoV-2 Main Protease: New Structural Insights from Computational Methods
Abstract
Main protease (Mpro) is one of the key enzymes in the life cycle of SARS-CoV-2 that plays a pivotal role in mediating viral replication, transcription, and makes it an attractive drug target for this virus. The catalytic site of this enzyme comprises of a dyad His41 and Cys145 and lacks the third catalytic residue, which is replaced by a stable water molecule (W). The computational structural analysis on crystal data for Mpro protein suggests that W1, W2, His163, and Tyr161 may also play a vital role in the activity of this enzyme and they may act as catalytic partners along with Cys(145)-His(41) catalytic dyad. The thiolate–imidazolium ion-pair between Cys145 (-SH---NE2-) His41 and Cys145 (-SH---NE2-) His163 have been stabilized by W1 (with W2) and Tyr161, respectively. Therefore, unique interactions of W2---W1---ND1-His41-NE2---SH-Cys145 or Cys145-SH---NE2-His163-ND1---OH-Tyr161 in Mpro serve as an excellent drug target for this enzyme and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site, its shape, and complementarities. Our computational hypothesis suggests two essential clues that may be implemented to design a new inhibitor for Mpro protein. The strategies are: (i) ligand should be occupied either W1 or W2 or both of these position to displace these water molecules from the catalytic region, and (ii) ligand should be made H-bonds with Cys145 (-SH), His41 (NE2/ND1) and His163(NE2) to inhibit Mpro. The results from this computational study could be of interest to the experimental community and also provide a testable hypothesis for experimental validation.
Â
Doi: 10.28991/SciMedJ-2020-02-SI-11
Full Text: PDF
Keywords
References
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X. & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506. doi:10.1016/S0140-6736(20)30183-5.
Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in different types of clinical specimens. Jama, 323(18), 1843-1844. doi:10.1001/jama.2020.3786.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R. & Niu, P. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. doi:10.1056/NEJMoa2001017.
Center for Systems Science and Engineering (CSSE) at JHU. COVID-19 Dashboard. Available online: https://coronavirus.jhu.edu/data/mortality (accessed on June 2020).
De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8), 523. doi:10.1038/nrmicro.2016.81.
Munster, V. J., Koopmans, M., van Doremalen, N., van Riel, D., & de Wit, E. (2020). A novel coronavirus emerging in China-key questions for impact assessment. New England Journal of Medicine, 382(8), 692-694. doi:10.1056/NEJMp2000929.
Banerjee, R., Perera, L., & Tillekeratne, L. M. V. (2020). Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today. doi:10.1016/j.drudis.2020.12.005.
Sisay, M. (2020). 3CLpro inhibitors as a potential therapeutic option for COVID-19: Available evidence and ongoing clinical trials. Pharmacological Research, 156, 104779. doi:10.1016/j.phrs.2020.104779.
Ghazy, R. M., Almaghraby, A., Shaaban, R., Kamal, A., Beshir, H., Moursi, A., … Taha, S. H. N. (2020). A systematic review and meta-analysis on chloroquine and hydroxychloroquine as monotherapy or combined with azithromycin in COVID-19 treatment. Scientific Reports, 10(1). doi:10.1038/s41598-020-77748-x.
Świderek, K. & Moliner, V., 2020. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/MM computational methods. Chemical Science, 11(39), 10626–10630. doi:10.1039/d0sc02823a.
Ramos-Guzmán, C. A., Ruiz-PernÃa, J. J., & Tuñón, I. (2020). Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods. ACS Catalysis, 10(21), 12544–12554. doi:10.1021/acscatal.0c03420.
Fehr, A. R., & Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. In Coronaviruses (pp. 1-23). Humana Press, New York, NY. doi:10.1007/978-1-4939-2438-7_1.
Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011-1033. doi:10.3390/v4061011.
Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 300(5626), 1763-1767. doi:10.1126/science.1085658.
Bzówka, M., Mitusinska, K., Raczynska, A., Samol, A., Tuszynski, J. A., & Góra, A. (2020). Molecular Dynamics Simulations Indicate the COVID-19 Mpro Is Not a Viable Target for Small-Molecule Inhibitors Design. bioRxiv. doi:10.1101/2020.02.27.968008.
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L. & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. doi:10.1038/s41586-020-2180-5.
Polgár, L. (2005). The catalytic triad of serine peptidases. Cellular and molecular life sciences CMLS, 62(19-20), 2161-2172. doi:10.1007/s00018-005-5160-x.
Banerjee, A., Bairagya, H. R., Mukhopadhyay, B. P., Nandi, T. K., & Mishra, D. K. (2013). Conserved water mediated H-bonding dynamics of Ser117 and Thr119 residues in human transthyretin–thyroxin complexation: Inhibitor modeling study through docking and molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 44, 70–80. doi:10.1016/j.jmgm.2013.04.010.
Chakrabarti, B., Bairagya, H. R., Mallik, P., Mukhopadhyay, B. P., & Bera, A. K. (2011). An Insight to Conserved Water Molecular Dynamics of Catalytic and Structural Zn+2ions in Matrix Metalloproteinase 13 of Human. Journal of Biomolecular Structure and Dynamics, 28(4), 503–516. doi:10.1080/07391102.2011.10508591.
Bairagya, H.R., Tasneem, A., Rai, G.P., & Reyaz, S. (2020). Structural and Dynamical Impact of Water Molecules at Substrate-or Product-Binding Sites in Human GMPR Enzyme: A Study by Molecular Dynamics Simulations. The Journal of Physical Chemistry B. doi:10.1021/acs.jpcb.0c08818.
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412. doi:10.1126/science.abb3405.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I.N. & Bourne, P. E. (2000). The protein data bank. Nucleic acids research, 28(1), 235-242. doi:10.1093/nar/28.1.235.
Guex, N., Diemand, A., Peitsch, M. C., & Schwede, T. (2000). SwissPDBViewer program. Glaxo Smith Kline R&D, Brentford.
Huang, J., & MacKerell Jr, A. D. (2013). CHARMM36 allâ€atom additive protein force field: Validation based on comparison to NMR data. Journal of computational chemistry, 34(25), 2135-2145. doi:10.1002/jcc.23354.
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5.
Booth, A. D. (1947). Application of the method of steepest descents to X-ray structure analysis. Nature, 160(4058), 196-196. doi:10.1038/160196a0.
Sumathi, K., Ananthalakshmi, P., Roshan, M. M., & Sekar, K. (2006). 3dSS: 3D structural superposition. Nucleic Acids Research, 34(suppl_2), W128-W132. doi:10.1093/nar/gkl036.
Bairagya, H. R., Mishra, D. K., Mukhopadhyay, B. P., & Sekar, K. (2014). Conserved water-mediated recognition and dynamics of NAD+ (carboxamide group) to hIMPDH enzyme: water mimic approach toward the design of isoform-selective inhibitor. Journal of Biomolecular Structure and Dynamics, 32(8), 1248-1262. doi:10.1080/07391102.2013.812982.
Ogata, K., & Wodak, S. J. (2002). Conserved water molecules in MHC class-I molecules and their putative structural and functional roles. Protein engineering, 15(8), 697-705. doi:10.1093/protein/15.8.697.
Mustata, G., & Briggs, J. M. (2004). Cluster analysis of water molecules in alanine racemase and their putative structural role. Protein Engineering Design and Selection, 17(3), 223-234. doi:10.1093/protein/gzh033.
Nandi, T. K., Bairagya, H. R., Mukhopadhyay, B. P., Sekar, K., Sukul, D., & Bera, A. K. (2009). Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease. Journal of biosciences, 34(1), 27-34. doi:10.1007/s12038-009-0006-6.
Bairagya, H. R., & Mukhopadhyay, B. P. (2013). An insight to the dynamics of conserved water-mediated salt bridge interaction and interdomain recognition in hIMPDH isoforms. Journal of Biomolecular Structure and Dynamics, 31(7), 788–808. doi:10.1080/07391102.2012.712458.
Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H. & Gao, G. F. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences, 100(23), 13190-13195. doi:10.1073/pnas.1835675100.
A., Owen, C. D., Wild, C., Krojer, T., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of COVID-19 main protease in complex with Z45617795. doi:10.2210/pdb5r7y/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2856434899. doi:10.2210/pdb5reb/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0103016. doi:10.2210/pdb5rem/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102425. doi:10.2210/pdb5ren/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102395. doi:10.2210/pdb5reu/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102275. doi:10.2210/pdb5rew/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102287. doi:10.2210/pdb5rex/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1741969146. doi:10.2210/pdb5rf2/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1348371854. doi:10.2210/pdb5rf6/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102372. doi:10.2210/pdb5rfg/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102277. doi:10.2210/pdb5rfh/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102353. doi:10.2210/pdb5rfi/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0103067. doi:10.2210/pdb5rfj/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102575. doi:10.2210/pdb5rfk/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102539. doi:10.2210/pdb5rfm/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102868. doi:10.2210/pdb5rfn/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102972. doi:10.2210/pdb5rfo/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102169. doi:10.2210/pdb5rfr/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102432. doi:10.2210/pdb5rft/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102306. doi:10.2210/pdb5rfv/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102974. doi:10.2210/pdb5rfy/pdb.
Fearon, D., Owen, C. D., Douangamath, A., Lukacik, P., Powell, A. J., Strain-Damerell, C. M., … von Delft, F. (2020). PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102962 (Mpro-x0705). doi:10.2210/pdb5rgl/pdb.
Owen, C. D., Lukacik, P., Strain-Damerell, C. M., Douangamath, A., Powell, A. J., Fearon, D., … Walsh, M. A. (2020). SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19). doi:10.2210/pdb6y84/pdb.
Owen, C. D., Lukacik, P., Strain-Damerell, C. M., Douangamath, A., Powell, A. J., Fearon, D., … Walsh, M. A. (2020). SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19). doi:10.2210/pdb6yb7/pdb.
DOI: 10.28991/SciMedJ-2020-02-SI-11
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Alvea Tasneem, Gyan Prakash Rai, Saima Reyaz, HRIDOY RANJAN BAIRAGYA