Evaluation of mir-377-3p Expression in Patients with Multiple Sclerosis

Majid Amini Khorasgani, Parisa Mohammady Nejad, Mohammad Mehdi Moghani Bashi, Mohammad Hedayati


One of the most recent studies in the field of genetics is to investigate the role of microRNAs as biomarkers for the diagnosis of multiple sclerosis. It is an inflammatory and degenerative disease of the central nervous myelin, which is manifested in numerous small and large plaques in the white matter of the brain and spinal cord. Formerly called has-miR-377-3p, miR-377-3p is located within the chromosomal region 32q14, and is located in the SOD gene. SOD (Superoxide Dismutase) is a gene located on chromosomal region 22q21 and the protein encoded by this gene is the superoxide dismutase enzyme. The aim of this study was to evaluate the expression of miR-377 in people with RRMS (Relapsing-Remitting Multiple Sclerosis) and healthy individuals in the Isfahan population. The study included 49 patients with RRMS and 52 healthy individuals who had no history of autoimmune and inflammatory disease. Total RNA was extracted from the blood lymphocytes of the study subjects using Ficol and Trizol and then made using miRNA cDNA, cDNA specific kit, and expression was measured by real-time RT PCR in healthy subjects and patients. Was. According to the results, miR-377-3p expression was higher in patients than in healthy subjects (P = 0.036) and the sensitivity and diagnostic value of miRNA was AUC = 0.80 (Area under the Curve). ) is.  The results were consistent with previous studies and miR-377-3p could be used as a biomarker for the diagnosis of Multiple Sclerosis.


Multiple Sclerosis; RRMS; miR-377-3p; SOD Gene.


Nedjat, S., Montazeri, A., Mohammad, K., Majdzadeh, R., Nabavi, N., & Nedjat, F. (2006). Multiple sclerosis quality of life comparing to healthy people. Iran J Epidemiol, 1(4), 19-24.

Hauser, S. L., & Oksenberg, J. R. (2006). The Neurobiology of Multiple Sclerosis: Genes, Inflammation, and Neurodegeneration. Neuron, 52(1), 61–76. doi:10.1016/j.neuron.2006.09.011.

ffrench-Constant, C. (1994). Pathogenesis of multiple sclerosis. The Lancet, 343(8892), 271–275. doi:10.1016/s0140-6736(94)91118-5.

Nikseresht, A., Izadi, S., & Rahimi, J. A. (2011). Usage and costs of treatment with beta interferon among patients with multiple sclerosis in Fars province. Hakim Res J. 14(3): 159-164.

Keller, A., Leidinger, P., Lange, J., Borries, A., Schroers, H., Scheffler, M., … Meese, E. (2009). Multiple Sclerosis: MicroRNA Expression Profiles Accurately Differentiate Patients with Relapsing-Remitting Disease from Healthy Controls. PLoS ONE, 4(10), e7440. doi:10.1371/journal.pone.0007440.

Wang, Q., Wang, Y., Minto, A. W., Wang, J., Shi, Q., Li, X., & Quigg, R. J. (2008). MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. The FASEB Journal, 22(12), 4126–4135. doi:10.1096/fj.08-112326.

Offen, D., Gilgun-Sherki, Y., & Melamed, E. (2004). The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy. Journal of Neurology, 251(3), 261–268. doi:10.1007/s00415-004-0348-9.

Galati, D., Srinivasan, S., Raza, H., Prabu, S. K., Hardy, M., Chandran, K., … Avadhani, N. G. (2009). Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochemical Journal, 420(3), 439–449. doi:10.1042/bj20090214.

Nathan, C. (2002). Points of control in inflammation. Nature, 420(6917), 846–852. doi:10.1038/nature01320.

Vyshkina, T., Banisor, I., Shugart, Y. Y., Leist, T. P., & Kalman, B. (2005). Genetic variants of Complex I in multiple sclerosis. Journal of the Neurological Sciences, 228(1), 55–64. doi:10.1016/j.jns.2004.09.027.

Cohen, J. E., Lee, P. R., Chen, S., Li, W., & Fields, R. D. (2011). MicroRNA regulation of homeostatic synaptic plasticity. Proceedings of the National Academy of Sciences, 108(28), 11650–11655. doi:10.1073/pnas.1017576108.

Dugas, J. C., & Notterpek, L. (2011). MicroRNAs in Oligodendrocyte and Schwann Cell Differentiation. Developmental Neuroscience, 33(1), 14–20. doi:10.1159/000323919.

Barca-Mayo, O., & Lu, Q. R. (2012). Fine-Tuning Oligodendrocyte Development by microRNAs. Frontiers in Neuroscience, 6. doi:10.3389/fnins.2012.00013.

He, X., Yu, Y., Awatramani, R., & Lu, Q. R. (2011). Unwrapping Myelination by MicroRNAs. The Neuroscientist, 18(1), 45–55. doi:10.1177/1073858410392382.

Zhao, X., He, X., Han, X., Yu, Y., Ye, F., Chen, Y., … Lu, Q. R. (2010). MicroRNA-Mediated Control of Oligodendrocyte Differentiation. Neuron, 65(5), 612–626. doi:10.1016/j.neuron.2010.02.018.

Svaren, J. (2014). MicroRNA and transcriptional crosstalk in myelinating glia. Neurochemistry International, 77, 50–57. doi:10.1016/j.neuint.2014.06.010.

Muddashetty, R., & Bassell, G. J. (2009). A boost in microRNAs shapes up the neuron. The EMBO Journal, 28(6), 617–618. doi:10.1038/emboj.2009.51.

Li, J.-S., & Yao, Z.-X. (2012). MicroRNAs: Novel Regulators of Oligodendrocyte Differentiation and Potential Therapeutic Targets in Demyelination-Related Diseases. Molecular Neurobiology, 45(1), 200–212. doi:10.1007/s12035-011-8231-z.

Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289. doi:10.1038/nature04367.

Full Text: PDF

DOI: 10.28991/SciMedJ-2019-0102-2


  • There are currently no refbacks.

Copyright (c) 2019 majid amini khorasgani, Parisa Mohammady Nejad, Mohammad Mehdi Moghani Bashi, Mohammad Hedayati