Prediction of COVID-19 Confirmed Cases after Vaccination: Based on Statistical and Deep Learning Models

Meejoung Kim


In this paper, we analyze and predict the number of daily confirmed cases of coronavirus (COVID-19) based on two statistical models and a deep learning (DL) model; the autoregressive integrated moving average (ARIMA), the generalized autoregressive conditional heteroscedasticity (GARCH), and the stacked long short-term memory deep neural network (LSTM DNN). We find the orders of the statistical models by the autocorrelation function and the partial autocorrelation function, and the hyperparameters of the DL model, such as the numbers of LSTM cells and blocks of a cell, by the exhaustive search. Ten datasets are used in the experiment; nine countries and the world datasets, from Dec. 31, 2019, to Feb. 22, 2021, provided by the WHO. We investigate the effects of data size and vaccination on performance. Numerical results show that performance depends on the used data's dates and vaccination. It also shows that the prediction by the LSTM DNN is better than those of the two statistical models. Based on the experimental results, the percentage improvements of LSTM DNN are up to 88.54% (86.63%) and 90.15% (87.74%) compared to ARIMA and GARCH, respectively, in mean absolute error (root mean squared error). While the performances of ARIMA and GARCH are varying according to the datasets. The obtained results may provide a criterion for the performance ranges and prediction accuracy of the COVID-19 daily confirmed cases.

Doi: 10.28991/SciMedJ-2021-0302-7

Full Text: PDF


Covid-19; Predictive Model; Non-linear Fitting; Long Short-Term Memory Deep Neural Network; Autoregressive Integrated Moving Average; Generalized Autoregressive Conditional Heteroscedasticity.


Yang, P., & Wang, X. (2020). COVID-19: a new challenge for human beings. Cellular & Molecular Immunology, 17(5), 555–557. doi:10.1038/s41423-020-0407-x.

World Health Organization. Coronavirus. Available online: (accessed on 17 March 2021)

Imran, A. S., Daudpota, S. M., Kastrati, Z., & Batra, R. (2020). Cross-Cultural Polarity and Emotion Detection Using Sentiment Analysis and Deep Learning on COVID-19 Related Tweets. IEEE Access, 8, 181074–181090. doi:10.1109/access.2020.3027350.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., … Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199–1207. doi:10.1056/nejmoa2001316.

Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S. S., … He, D. (2020). A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 93, 211–216. doi:10.1016/j.ijid.2020.02.058.

Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., … Hellewell, J. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 5(5), e261–e270. doi:10.1016/s2468-2667(20)30073-6.

Ndaïrou, F., Area, I., Nieto, J. J., & Torres, D. F. M. (2020). Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals, 135, 109846. doi:10.1016/j.chaos.2020.109846.

Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., … Flasche, S. (2020). Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The Lancet Infectious Diseases, 20(5), 553–558. doi:10.1016/s1473-3099(20)30144-4.

Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., … Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214–217. doi:10.1016/j.ijid.2020.01.050.

Shen, M., Peng, Z., Xiao, Y., & Zhang, L. (2020). Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China. bioRxiv. doi:10.1101/2020.01.23.916726.

Çakan, S. (2020). Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic. Chaos, Solitons & Fractals, 139, 110033. doi:10.1016/j.chaos.2020.110033.

Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 395(10225), 689–697. doi:10.1016/s0140-6736(20)30260-9

Shah, N. H., Suthar, A. H., & Jayswal, E. N. (2020). Control Strategies to Curtail Transmission of COVID-19. International Journal of Mathematics and Mathematical Sciences, 1, 1–12. doi:10.1101/2020.04.04.20053173.

Intissar, A. (2020). A Mathematical Study of a Generalized SEIR Model of COVID-19. SciMedicine Journal, 2, 30–67. doi:10.28991/scimedj-2020-02-si-4

Zheng, N., Du, S., Wang, J., Zhang, H., Cui, W., Kang, Z., … Xin, J. (2020). Predicting COVID-19 in China Using Hybrid AI Model. IEEE Transactions on Cybernetics, 50(7), 2891–2904. doi:10.1109/tcyb.2020.2990162.

Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals, 134, 109761. doi:10.1016/j.chaos.2020.109761.

Choi, S., & Ki, M. (2020). Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiology and Health, 42, e2020011. doi:10.4178/epih.e2020011.

Ivorra, B., Ferrández, M. R., Vela-Pérez, M., & Ramos, A. M. (2020). Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Communications in Nonlinear Science and Numerical Simulation, 88, 105303. doi:10.1016/j.cnsns.2020.105303.

Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(24). doi:10.1186/s40249-020-00640-3.

Roy, S., Bhunia, G. S., & Shit, P. K. (2020). Spatial prediction of COVID-19 epidemic using ARIMA techniques in India. Modeling Earth Systems and Environment. doi:10.1007/s40808-020-00890-y.

Singh, S., Parmar, K. S., Kumar, J., & Makkhan, S. J. S. (2020). Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 135, 109866. doi:10.1016/j.chaos.2020.109866.

Singh, S., Parmar, K. S., Makkhan, S. J. S., Kaur, J., Peshoria, S., & Kumar, J. (2020). Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries. Chaos, Solitons & Fractals, 139, 110086. doi:10.1016/j.chaos.2020.110086.

Shahid, F., Zameer, A., & Muneeb, M. (2020). Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos, Solitons & Fractals, 140, 110212. doi:10.1016/j.chaos.2020.110212.

Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., & Pinheiro, P. R. (2020). CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection. IEEE Access, 8, 91916–91923. doi:10.1109/access.2020.2994762.

Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., … Crowcroft, J. (2020). Leveraging Data Science To Combat COVID-19: A Comprehensive Review. doi:10.36227/techrxiv.12212516.

Pham, Q.-V., Nguyen, D. C., Huynh-The, T., Hwang, W.-J., & Pathirana, P. N. (2020). Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19) Pandemic: A Survey on the State-of-the-Arts. IEEE Access, 8, 130820–130839. doi:10.1109/access.2020.3009328.

Chamola, V., Hassija, V., Gupta, V., & Guizani, M. (2020). A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. IEEE Access, 8, 90225–90265. doi:10.1109/access.2020.2992341.

Kim, M. (2020). Network traffic prediction based on INGARCH model. Wireless Networks 26(8), 6189–6202. doi:10.1007/s11276-020-02431-y.

Kim, M. (2021). ML/CGAN: Network Attack Analysis using CGAN as Meta-Learning. IEEE Communications Letters 25(2), 499-502. doi:10.1109/lcomm.2020.3029580.

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications. Springer Texts in Statistics. doi:10.1007/978-3-319-52452-8

Azzouni, A., & Pujolle, G. (2017). A long short‐term memory recurrent neural network framework for network traffic matrix prediction. arxiv preprint arxiv: 1705.05690 v3.

Available online: (accessed on 17 February 2021).

Full Text: PDF

DOI: 10.28991/SciMedJ-2021-0302-7


  • There are currently no refbacks.

Copyright (c) 2021 Meejoung Kim