Factors for COVID-19 Infection that Govern the Severity of Illness

Bidisha Ghosh, Soumyadev Sarkar, Nayim Sepay, Kaustuv Das, Sukhen Das, Sujata Ghosh Dastidar


Coronaviruses have been posing a serious threat to mammals and birds and a new class of SARS-CoV is creating havoc to the world after its first incidence in Wuhan City in China in December 2019. These viruses are mainly responsible for causing serious respiratory tract infections which generally appear initially as the common cold and can be lethal just like SARS-CoV. The problems seem to vary and worsen from one person to another depending on age, gender, ethnicity, blood groups, host genetics, and associated comorbidities. Complications should also arise as this virus keeps mutating and evolving. This review points out the various underlying causes behind the severity of the illness and the mechanisms associated with it. This review will help society to understand the risks and severities associated with COVID-19. Individuals with health complexities and predispositions listed in this review are the most vulnerable in terms of severity and should take every possible measure to protect themselves from getting infected. As a consequence, this will lead to a decrease in mortality rates arising from COVID-19.


Doi: 10.28991/SciMedJ-2021-0302-9

Full Text: PDF


SARS-CoV-2; COVID-19; Coronavirus; Severity; Comorbidity.


Noor, A. U., Maqbool, F., Bhatti, Z. A., & Khan, A. U. (2020). Epidemiology of CoViD-19 Pandemic: Recovery and mortality ratio around the globe. Pakistan Journal of Medical Sciences, 36(COVID19-S4). doi:10.12669/pjms.36.covid19-s4.2660.

Liu, Y.-C., Kuo, R.-L., & Shih, S.-R. (2020). COVID-19: The first documented coronavirus pandemic in history. Biomedical Journal, 43(4), 328–333. Doi:10.1016/j.bj.2020.04.007.

Wu, Y., Ho, W., Huang, Y., Jin, D.-Y., Li, S., Liu, S.-L., … Zheng, Z.-M. (2020). SARS-CoV-2 is an appropriate name for the new coronavirus. The Lancet, 395(10228), 949–950. doi:10.1016/s0140-6736(20)30557-2.

World Health Organization: WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 20 May 2020).

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., … Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199–1207. doi:10.1056/nejmoa2001316.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. doi:10.1016/s0140-6736(20)30183-5.

Snijder, E. J., Den Boon, J. A., Horzinek, M. C., & Spaan, W. J. M. (1991). Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during berne virus evolution. Virology, 180(1), 448–452. doi:10.1016/0042-6822(91)90056-h.

Masters, P. S. (2006). The Molecular Biology of Coronaviruses. Advances in Virus Research, 193–292. doi:10.1016/s0065-3527(06)66005-3.

Gundy, P. M., Gerba, C. P., & Pepper, I. L. (2008). Survival of Coronaviruses in Water and Wastewater. Food and Environmental Virology, 1(1). doi:10.1007/s12560-008-9001-6.

Chen, J., Liu, D., Liu, L., Liu, P., Xu, Q., Xia, L., ... & Lu, H. (2020). A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). Journal of Zhejiang University (Medical Science), 49(1), 0-0. doi: 10.3785/j.issn.1008-9292.2020.03.03.

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. doi:10.1016/s0140-6736(20)30251-8.

Liu, J., Xie, W., Wang, Y., Xiong, Y., Chen, S., Han, J., & Wu, Q. (2020). A comparative overview of COVID-19, MERS and SARS: Review article. International Journal of Surgery, 81, 1–8. doi:10.1016/j.ijsu.2020.07.032.

Yuan, S., Jiang, S.-C., & Li, Z.-L. (2020). Analysis of Possible Intermediate Hosts of the New Coronavirus SARS-CoV-2. Frontiers in Veterinary Science, 7. doi:10.3389/fvets.2020.00379.

Liu, Z., Xiao, X., Wei, X., Li, J., Yang, J., Tan, H., … Liu, L. (2020). Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2. Journal of Medical Virology, 92(6), 595–601. doi:10.1002/jmv.25726.

Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology, 30(7), 1346–1351.e2. doi:10.1016/j.cub.2020.03.022.

Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., … Jiang, T. (2020). Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host & Microbe, 27(3), 325–328. doi:10.1016/j.chom.2020.02.001.

Fani, M., Teimoori, A., & Ghafari, S. (2020). Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virology, 15(5), 317–323. doi:10.2217/fvl-2020-0050.

Li, F. (2005). Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor. Science, 309(5742), 1864–1868. doi:10.1126/science.1116480.

Ortega, J. T., Serrano, M. L., Pujol, F. H., & Rangel, H. R. (2020). Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI journal, 19, 410. doi: 10.17179/excli2020-1167.

Tipnis, S. R., Hooper, N. M., Hyde, R., Karran, E., Christie, G., & Turner, A. J. (2000). A Human Homolog of Angiotensin-converting Enzyme. Journal of Biological Chemistry, 275(43), 33238–33243. doi:10.1074/jbc.m002615200.

Tikellis, C., & Thomas, M. C. (2012). Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. International Journal of Peptides, 2012, 1–8. doi:10.1155/2012/256294.

Vinciguerra, M., & Greco, E. (2020). Sars-CoV-2 and black population: ACE2 as shield or blade? Infection, Genetics and Evolution, 84, 104361. doi:10.1016/j.meegid.2020.104361.

Deng, J., Wang, D., Deng, W., Li, C., & Tong, J. (2012). The Effect of Endogenous Angiotensin II on Alveolar Fluid Clearance in Rats with Acute Lung Injury. Canadian Respiratory Journal, 19(5), 311–318. doi:10.1155/2012/951025.

Chen, J., Jiang, Q., Xia, X., Liu, K., Yu, Z., Tao, W., … Han, J. J. (2020). Individual variation of the SARS‐CoV‐2 receptor ACE2 gene expression and regulation. Aging Cell, 19(7). doi:10.1111/acel.13168.

Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., & Zuo, W. (2020). Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine, 202(5), 756–759. doi:10.1164/rccm.202001-0179le.

Silhol, F., Sarlon, G., Deharo, J.-C., & Vaïsse, B. (2020). Downregulation of ACE2 induces overstimulation of the renin–angiotensin system in COVID-19: should we block the renin–angiotensin system? Hypertension Research, 43(8), 854–856. doi:10.1038/s41440-020-0476-3.

Verdecchia, P., Cavallini, C., Spanevello, A., & Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal of Internal Medicine, 76, 14–20. doi:10.1016/j.ejim.2020.04.037.

Kehoe, P. G., Wong, S., AL Mulhim, N., Palmer, L. E., & Miners, J. S. (2016). Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimer’s Research & Therapy, 8(1). doi:10.1186/s13195-016-0217-7.

Haghighi, M. M., Kakhki, E. G., Sato, C., Ghani, M., & Rogaeva, E. (2020). The Intersection between COVID-19, the Gene Family of ACE2 and Alzheimer’s Disease. Neuroscience Insights, 15, 263310552097574. doi:10.1177/2633105520975743.

Smith, J. C., Sausville, E. L., Girish, V., Yuan, M. L., Vasudevan, A., John, K. M., & Sheltzer, J. M. (2020). Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Developmental Cell, 53(5), 514–529.e3. doi:10.1016/j.devcel.2020.05.012.

Pagliaro, P., & Penna, C. (2020). ACE/ACE2 Ratio: A Key Also in 2019 Coronavirus Disease (Covid-19)? Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00335.

Albright, J. M., Dunn, R. C., Shults, J. A., Boe, D. M., Afshar, M., & Kovacs, E. J. (2016). Advanced Age Alters Monocyte and Macrophage Responses. Antioxidants & Redox Signaling, 25(15), 805–815. doi:10.1089/ars.2016.6691.

Linehan, E., & Fitzgerald, D. (2015). Ageing and the immune system: focus on macrophages. European Journal of Microbiology and Immunology, 5(1), 14–24. doi:10.1556/eujmi-d-14-00035.

Pence, B. D. (2020). Severe COVID-19 and aging: are monocytes the key? GeroScience, 42(4), 1051–1061. doi:10.1007/s11357-020-00213-0.

Wong, C. K., Smith, C. A., Sakamoto, K., Kaminski, N., Koff, J. L., & Goldstein, D. R. (2017). Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice. The Journal of Immunology, 199(3), 1060–1068. doi:10.4049/jimmunol.1700397.

Van Beek, A. A., Van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J., & Leenen, P. J. M. (2019). Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging? Trends in Immunology, 40(2), 113–127. doi:10.1016/j.it.2018.12.007.

Evans, R. M., & Lippman, S. M. (2020). Shining Light on the COVID-19 Pandemic: A Vitamin D Receptor Checkpoint in Defense of Unregulated Wound Healing. Cell Metabolism, 32(5), 704–709. doi:10.1016/j.cmet.2020.09.007.

Mok, C. K., Ng, Y. L., Ahidjo, B. A., Hua Lee, R. C., Choy Loe, M. W., Liu, J., … Hann Chu, J. J. (2020). Calcitriol, the active form of vitamin D, is a promising candidate for COVID-19 prophylaxis. doi:10.1101/2020.06.21.162396.

Mohan, M., Cherian, J. J., & Sharma, A. (2020). Exploring links between vitamin D deficiency and COVID-19. PLOS Pathogens, 16(9), e1008874. doi:10.1371/journal.ppat.1008874.

Wu, D., & Yang, X. O. (2020). TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. Journal of Microbiology, Immunology and Infection, 53(3), 368–370. doi:10.1016/j.jmii.2020.03.005.

Chen, Y., Zhang, J., Ge, X., Du, J., Deb, D. K., & Li, Y. C. (2013). Vitamin D Receptor Inhibits Nuclear Factor κB Activation by Interacting with IκB Kinase β Protein. Journal of Biological Chemistry, 288(27), 19450–19458. doi:10.1074/jbc.m113.467670.

George, P. M., Wells, A. U., & Jenkins, R. G. (2020). Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. The Lancet Respiratory Medicine, 8(8), 807–815. doi:10.1016/s2213-2600(20)30225-3.

Gubernatorova, E. O., Gorshkova, E. A., Polinova, A. I., & Drutskaya, M. S. (2020). IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine & Growth Factor Reviews, 53, 13–24. doi:10.1016/j.cytogfr.2020.05.009.

Saxena, N., & Gutiérrez, O. M. (2013). Fibroblast Growth Factor 23, Vitamin D, and Health Disparities Among African Americans With Chronic Kidney Disease. Seminars in Nephrology, 33(5), 448–456. doi:10.1016/j.semnephrol.2013.07.006.

Dancer, R. C. A., Parekh, D., Lax, S., D’Souza, V., Zheng, S., Bassford, C. R., … Thickett, D. R. (2015). Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax, 70(7), 617–624. doi:10.1136/thoraxjnl-2014-206680.

Biesalski, H. K. (2020). Vitamin D deficiency and co-morbidities in COVID-19 patients – A fatal relationship? NFS Journal, 20, 10–21. doi:10.1016/j.nfs.2020.06.001.

Price-Haywood, E. G., Burton, J., Fort, D., & Seoane, L. (2020). Hospitalization and Mortality among Black Patients and White Patients with Covid-19. New England Journal of Medicine, 382(26), 2534–2543. doi:10.1056/nejmsa2011686.

Kohlmeier, M. (2020). Avoidance of vitamin D deficiency to slow the COVID-19 pandemic. BMJ Nutrition, Prevention & Health, 3(1), 67–73. doi:10.1136/bmjnph-2020-000096.

Azevedo, L. A., Matte, U., Silveira, T. R., Bonfanti, J. W., Bruch, J. P., & Álvares-da-Silva, M. R. (2017). Effect of Vitamin D Serum Levels and GC Gene Polymorphisms in Liver Fibrosis Due to Chronic Hepatitis C. Annals of Hepatology, 16(5), 742–748. doi:10.5604/01.3001.0010.2748.

Davies, S. E., & Bennett, B. (2016). A gendered human rights analysis of Ebola and Zika: locating gender in global health emergencies. International Affairs, 92(5), 1041–1060. doi:10.1111/1468-2346.12704.

Liu, J., Zhang, L., Chen, Y., Wu, Z., Dong, X., Teboul, J.-L., … Chen, D. (2020). Association of sex with clinical outcomes in COVID-19 patients: A retrospective analysis of 1190 cases. Respiratory Medicine, 173, 106159. doi:10.1016/j.rmed.2020.106159.

Tufan, A., Avanoğlu Güler, A., & Matucci-Cerinic, M. (2020). COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. TURKISH JOURNAL OF MEDICAL SCIENCES, 50(SI-1), 620–632. doi:10.3906/sag-2004-168.

Liu, Y., Zhang, C., Huang, F., Yang, Y., Wang, F., Yuan, J., … Jiang, C. (2020). Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. National Science Review, 7(6), 1003–1011. doi:10.1093/nsr/nwaa037.

Satış, H., Özger, H. S., Aysert Yıldız, P., Hızel, K., Gulbahar, Ö., Erbaş, G., … Tufan, A. (2021). Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine, 137, 155302. doi:10.1016/j.cyto.2020.155302.

Hashem, N. M., Abdelnour, S. A., Alhimaidi, A. R., & Swelum, A. A. (2021). Potential impacts of COVID-19 on reproductive health: Scientific findings and social dimension. Saudi Journal of Biological Sciences, 28(3), 1702–1712. doi:10.1016/j.sjbs.2020.12.012.

Baena, E., Shao, Z., Linn, D. E., Glass, K., Hamblen, M. J., Fujiwara, Y., … Li, Z. (2013). ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes & Development, 27(6), 683–698. doi:10.1101/gad.211011.112.

Stelzig, K. E., Canepa-Escaro, F., Schiliro, M., Berdnikovs, S., Prakash, Y. S., & Chiarella, S. E. (2020). Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 318(6), L1280–L1281. doi:10.1152/ajplung.00153.2020.

Gemmati, D., Bramanti, B., Serino, M. L., Secchiero, P., Zauli, G., & Tisato, V. (2020). COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? International Journal of Molecular Sciences, 21(10), 3474. doi:10.3390/ijms21103474.

Panning, B. (2008). X-chromosome inactivation: the molecular basis of silencing. Journal of Biology, 7(8), 30. doi:10.1186/jbiol95.

Carrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434(7031), 400–404. doi:10.1038/nature03479.

Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., … Penninger, J. M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine, 11(8), 875–879. doi:10.1038/nm1267.

Bangham, J. (2014). Blood groups and human groups: Collecting and calibrating genetic data after World War Two. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 47, 74–86. doi:10.1016/j.shpsc.2014.05.008.

Silva-Filho, J. C., Melo, C. G. F. de, & Oliveira, J. L. de. (2020). The influence of ABO blood groups on COVID-19 susceptibility and severity: A molecular hypothesis based on carbohydrate-carbohydrate interactions. Medical Hypotheses, 144, 110155. doi:10.1016/j.mehy.2020.110155.

Hosoi, E. (2008). Biological and clinical aspects of ABO blood group system. The Journal of Medical Investigation, 55(3,4), 174–182. doi:10.2152/jmi.55.174.

Cooling, L. (2015). Blood Groups in Infection and Host Susceptibility. Clinical Microbiology Reviews, 28(3), 801–870. doi:10.1128/cmr.00109-14.

Garratty, G., Glynn, S. A., & McEntire, R. (2004). ABO and Rh(D) phenotype frequencies of different racial/ ethnic groups in the United States. Transfusion, 44(5), 703–706. doi:10.1111/j.1537-2995.2004.03338.x.

Daniels, G. L., Fletcher, A., Garratty, G., Henry, S., Jorgensen, J., Judd, W. J., … Zelinski, T. (2004). Blood group terminology 2004: from the International Society of Blood Transfusion committee on terminology for red cell surface antigens. Vox Sanguinis, 87(4), 304–316. doi:10.1111/j.1423-0410.2004.00564.x.

Zietz, M., Zucker, J., & Tatonetti, N. P. (2020). Associations between blood type and COVID-19 infection, intubation, and death. Nature Communications, 11(1). doi:10.1038/s41467-020-19623-x.

Paré, G., Chasman, D. I., Kellogg, M., Zee, R. Y. L., Rifai, N., Badola, S., … Ridker, P. M. (2008). Novel Association of ABO Histo-Blood Group Antigen with Soluble ICAM-1: Results of a Genome-Wide Association Study of 6,578 Women. PLoS Genetics, 4(7), e1000118. doi:10.1371/journal.pgen.1000118.

Muller, W. A. (2013). Getting Leukocytes to the Site of Inflammation. Veterinary Pathology, 50(1), 7–22. doi:10.1177/0300985812469883.

Adams, D. H., & Rlloyd, A. (1997). Chemokines: leucocyte recruitment and activation cytokines. The Lancet, 349(9050), 490–495. doi:10.1016/s0140-6736(96)07524-1.

Staunton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L., & Springer, T. A. (1988). Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell, 52(6), 925–933. doi:10.1016/0092-8674(88)90434-5.

Zhang, W., Xu, Q., Zhuang, Y., & Chen, Y. (2016). Novel association of soluble intercellular adhesion molecule 1 and soluble P-selectin with the ABO blood group in a Chinese population. Experimental and Therapeutic Medicine, 12(2), 909–914. doi:10.3892/etm.2016.3347.

Atarashi, K., Hirata, T., Matsumoto, M., Kanemitsu, N., & Miyasaka, M. (2005). Rolling of Th1 Cells via P-Selectin Glycoprotein Ligand-1 Stimulates LFA-1-Mediated Cell Binding to ICAM-1. The Journal of Immunology, 174(3), 1424–1432. doi:10.4049/jimmunol.174.3.1424.

Beauséjour, Y., & Tremblay, M. J. (2004). Interaction between the Cytoplasmic Domain of ICAM-1 and Pr55Gag Leads to Acquisition of Host ICAM-1 by Human Immunodeficiency Virus Type 1. Journal of Virology, 78(21), 11916–11925. doi:10.1128/jvi.78.21.11916-11925.2004.

Romero, A., San Hipólito‐Luengo, Á., Villalobos, L. A., Vallejo, S., Valencia, I., Michalska, P., … Peiró, C. (2019). The angiotensin‐(1‐7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell, 18(3), e12913. doi:10.1111/acel.12913.

Zeng, Q., Langereis, M. A., van Vliet, A. L. W., Huizinga, E. G., & de Groot, R. J. (2008). Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proceedings of the National Academy of Sciences, 105(26), 9065–9069. doi:10.1073/pnas.0800502105.

Varki, A. (2008). Sialic acids in human health and disease. Trends in Molecular Medicine, 14(8), 351–360. doi:10.1016/j.molmed.2008.06.002.

Wielgat, P., Rogowski, K., Godlewska, K., & Car, H. (2020). Coronaviruses: Is Sialic Acid a Gate to the Eye of Cytokine Storm? From the Entry to the Effects. Cells, 9(9), 1963. doi:10.3390/cells9091963.

Barile, E., Baggio, C., Gambini, L., Shiryaev, S. A., Strongin, A. Y., & Pellecchia, M. (2020). Potential Therapeutic Targeting of Coronavirus Spike Glycoprotein Priming. Molecules, 25(10), 2424. doi:10.3390/molecules25102424.

Tortorici, M. A., Walls, A. C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., … Veesler, D. (2019). Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural & Molecular Biology, 26(6), 481–489. doi:10.1038/s41594-019-0233-y.

Han, H., Luo, Q., Mo, F., Long, L., & Zheng, W. (2020). SARS-CoV-2 RNA more readily detected in induced sputum than in throat swabs of convalescent COVID-19 patients. The Lancet Infectious Diseases, 20(6), 655–656. doi:10.1016/s1473-3099(20)30174-2.

Haddad, H. M. (1964). Sialic Acids in the Eye* *From the Department of Ophthahnology, Washington University School of Medicine. American Journal of Ophthalmology, 58(6), 979–982. doi:10.1016/0002-9394(64)90008-x.

Colavita, F., Lapa, D., Carletti, F., Lalle, E., Bordi, L., Marsella, P., … Castilletti, C. (2020). SARS-CoV-2 Isolation From Ocular Secretions of a Patient With COVID-19 in Italy With Prolonged Viral RNA Detection. Annals of Internal Medicine, 173(3), 242–243. doi:10.7326/m20-1176.

Kaya, H., Çalışkan, A., Okul, M., Sarı, T., & Akbudak, İ. H. (2020). Detection of SARS-CoV-2 in the tears and conjunctival secretions of Coronavirus disease 2019 patients. The Journal of Infection in Developing Countries, 14(09), 977–981. doi:10.3855/jidc.13224.

Singh, A. K., & Misra, A. (2020). Impact of COVID-19 and comorbidities on health and economics: Focus on developing countries and India. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(6), 1625–1630. doi:10.1016/j.dsx.2020.08.032.

Rao, B., Singh, S., Chacko, J., Mani, R., Wattal, C., Khilnani, G., … Tiwary, P. (2020). Critical Care for COVID-19 Affected Patients: Position Statement of the Indian Society of Critical Care Medicine. Indian Journal of Critical Care Medicine, 24(4), 222–241. doi:10.5005/jp-journals-10071-23395.

Majeed, J., Ajmera, P., & Goyal, R. K. (2020). Delineating clinical characteristics and comorbidities among 206 COVID-19 deceased patients in India: Emerging significance of renin angiotensin system derangement. Diabetes Research and Clinical Practice, 167, 108349. doi:10.1016/j.diabres.2020.108349.

Harman, K., Verma, A., Cook, J., Radia, T., Zuckerman, M., Deep, A., … Gupta, A. (2020). Ethnicity and COVID-19 in children with comorbidities. The Lancet Child & Adolescent Health, 4(7), e24–e25. doi:10.1016/s2352-4642(20)30167-x.

Lu, X., Zhang, L., Du, H., Zhang, J., Li, Y. Y., Qu, J., … Wong, G. W. K. (2020). SARS-CoV-2 Infection in Children. New England Journal of Medicine, 382(17), 1663–1665. doi:10.1056/nejmc2005073.

Foster, M. P., Montecino-Rodriguez, E., & Dorshkind, K. (1999). Proliferation of bone marrow pro-B cells is dependent on stimulation by the pituitary/thyroid axis. The Journal of Immunology, 163(11), 5883-5890.

Schoenfeld, P. S., Myers, J. W., Myers, L., & Larocque, J. C. (1995). Suppression of Cell-Mediated Immunity in Hypothyroidism. Southern Medical Journal, 88(3), 347–349. doi:10.1097/00007611-199503000-00019.

Li, M.-Y., Li, L., Zhang, Y., & Wang, X.-S. (2020). Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty, 9(1). doi:10.1186/s40249-020-00662-x.

Van Gerwen, M., Alsen, M., Little, C., Barlow, J., Naymagon, L., Tremblay, D., … Genden, E. (2020). Outcomes of Patients With Hypothyroidism and COVID-19: A Retrospective Cohort Study. Frontiers in Endocrinology, 11. doi:10.3389/fendo.2020.00565.

Schultze, A., Walker, A. J., MacKenna, B., Morton, C. E., Bhaskaran, K., Brown, J. P., … Goldacre, B. (2020). Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an observational cohort study using the OpenSAFELY platform. The Lancet Respiratory Medicine, 8(11), 1106–1120. doi:10.1016/s2213-2600(20)30415-x.

Ejaz, H., Alsrhani, A., Zafar, A., Javed, H., Junaid, K., Abdalla, A. E., … Younas, S. (2020). COVID-19 and comorbidities: Deleterious impact on infected patients. Journal of Infection and Public Health, 13(12), 1833–1839. doi:10.1016/j.jiph.2020.07.014.

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94(7). doi: 10.1128/JVI.00127-20.

Liu, W., Tao, Z.-W., Wang, L., Yuan, M.-L., Liu, K., Zhou, L., … Hu, Y. (2020). Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chinese Medical Journal, 133(9), 1032–1038. doi:10.1097/cm9.0000000000000775.

Oakes, J. M., Fuchs, R. M., Gardner, J. D., Lazartigues, E., & Yue, X. (2018). Nicotine and the renin-angiotensin system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 315(5), R895–R906. doi:10.1152/ajpregu.00099.2018.

Kim, W. J., Song, J. S., Park, D. W., Kwak, H. J., Moon, J.-Y., Kim, S.-H., … Kim, T.-H. (2014). The effects of secondhand smoke on chronic obstructive pulmonary disease in nonsmoking Korean adults. The Korean Journal of Internal Medicine, 29(5), 613. doi:10.3904/kjim.2014.29.5.613.

Ayo-Yusuf, O. A., Reddy, P. S., & van den Borne, B. W. (2008). Association of snuff use with chronic bronchitis among South African women: implications for tobacco harm reduction. Tobacco Control, 17(2), 99–104. doi:10.1136/tc.2007.022608.

Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., … He, J. (2016). Global Disparities of Hypertension Prevalence and Control. Circulation, 134(6), 441–450. doi:10.1161/circulationaha.115.018912.

Carey, R. M. (1984). The 1984 Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Archives of Internal Medicine, 144(5), 1045. doi:10.1001/archinte.1984.00350170211032.

Kannel, W. B. (1981). Systolic Blood Pressure, Arterial Rigidity, and Risk of Stroke. JAMA, 245(12), 1225. doi:10.1001/jama.1981.03310370017013.

Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: analysis of worldwide data. The Lancet, 365(9455), 217–223. doi:10.1016/s0140-6736(05)17741-1.

Everett, B., & Zajacova, A. (2015). Gender Differences in Hypertension and Hypertension Awareness Among Young Adults. Biodemography and Social Biology, 61(1), 1–17. doi:10.1080/19485565.2014.929488.

Maranon, R., & Reckelhoff, J. F. (2013). Sex and gender differences in control of blood pressure. Clinical Science, 125(7), 311–318. doi:10.1042/cs20130140.

Alvarez, G. E., Beske, S. D., Ballard, T. P., & Davy, K. P. (2002). Sympathetic Neural Activation in Visceral Obesity. Circulation, 106(20), 2533–2536. doi:10.1161/01.cir.0000041244.79165.25.

Esler, M., Lambert, G., & Jennings, G. (1990). Increased regional sympathetic nervous activity in human hypertension: causes and consequences. Journal of hypertension. Supplement: official journal of the International Society of Hypertension, 8(7), S53-7.

Boese, A. C., Kim, S. C., Yin, K.-J., Lee, J.-P., & Hamblin, M. H. (2017). Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. American Journal of Physiology-Heart and Circulatory Physiology, 313(3), H524–H545. doi:10.1152/ajpheart.00217.2016.

Wu, C.-C., Cheng, J., Zhang, F. F., Gotlinger, K. H., Kelkar, M., Zhang, Y., … Schwartzman, M. L. (2011). Androgen-Dependent Hypertension Is Mediated by 20-Hydroxy-5,8,11,14-Eicosatetraenoic Acid–Induced Vascular Dysfunction. Hypertension, 57(4), 788–794. doi:10.1161/hypertensionaha.110.161570.

Ishizuka, T., Cheng, J., Singh, H., Vitto, M. D., Manthati, V. L., Falck, J. R., & Laniado-Schwartzman, M. (2007). 20-Hydroxyeicosatetraenoic Acid Stimulates Nuclear Factor-κB Activation and the Production of Inflammatory Cytokines in Human Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 324(1), 103–110. doi:10.1124/jpet.107.130336.

Girardin, E., Caverzasio, J., Iwai, J., Bonjour, J.-P., Muller, A. F., Montandon, N., & Grandchamp, A. (1980). Pressure natriuresis in isolated kidneys from hypertension-prone and hypertension-resistant rats (Dahl rats). Kidney International, 18(1), 10–19. doi:10.1038/ki.1980.105.

Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B., & Wu, J. C. (2020). COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 17(9), 543–558. doi:10.1038/s41569-020-0413-9.

Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., … Huang, C. (2020). Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiology, 5(7), 802. doi:10.1001/jamacardio.2020.0950.

Azevedo, R. B., Botelho, B. G., Hollanda, J. V. G. de, Ferreira, L. V. L., Junqueira de Andrade, L. Z., Oei, S. S. M. L., … Muxfeldt, E. S. (2020). Covid-19 and the cardiovascular system: a comprehensive review. Journal of Human Hypertension, 35(1), 4–11. doi:10.1038/s41371-020-0387-4.

Felsenstein, S., & Hedrich, C. M. (2020). COVID-19 in children and young people. The Lancet Rheumatology, 2(9), e514–e516. doi:10.1016/s2665-9913(20)30212-5.

Dai, H., Guo, Y., Guang, X., Xiao, Z., Zhang, M., & Yin, X. (2013). The Changes of Serum Angiotensin-Converting Enzyme 2 in Patients with Pulmonary Arterial Hypertension due to Congenital Heart Disease. Cardiology, 124(4), 208–212. doi:10.1159/000346884.

Fleischmann Jr, W. R. (1996). Viral genetics. Medical Microbiology. 4th edition. Available online: https://www.ncbi.nlm.nih.gov/books/NBK7627/ (accessed on 20 March 2021).

Grubaugh, N. D., Hanage, W. P., & Rasmussen, A. L. (2020). Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear. Cell, 182(4), 794–795. doi:10.1016/j.cell.2020.06.040.

Forster, P., Forster, L., Renfrew, C., & Forster, M. (2020). Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences, 117(17), 9241–9243. doi:10.1073/pnas.2004999117.

Robson, F., Khan, K. S., Le, T. K., Paris, C., Demirbag, S., Barfuss, P., … Ng, W.-L. (2020). Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Molecular Cell, 79(5), 710–727. doi:10.1016/j.molcel.2020.07.027.

Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., … Wyles, M. D. (2020). Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 182(4), 812–827.e19. doi:10.1016/j.cell.2020.06.043.

Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T. P., Wang, Y., … Luban, J. (2020). Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 183(3), 739–751.e8. doi:10.1016/j.cell.2020.09.032.

Mansbach, R. A., Chakraborty, S., Nguyen, K., Montefiori, D. C., Korber, B., & Gnanakaran, S. (2020). The SARS-CoV-2 Spike Variant D614G Favors an Open Conformational State. doi:10.1101/2020.07.26.219741.

Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. C., … Bieniasz, P. D. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife, 9. doi:10.7554/elife.61312.

Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., … Bloom, J. D. (2020). Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 182(5), 1295–1310.e20. doi:10.1016/j.cell.2020.08.012.

Young, B. E., Fong, S.-W., Chan, Y.-H., Mak, T.-M., Ang, L. W., Anderson, D. E., … Ng, L. F. P. (2020). Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. The Lancet, 396(10251), 603–611. doi:10.1016/s0140-6736(20)31757-8.

Benvenuto, D., Angeletti, S., Giovanetti, M., Bianchi, M., Pascarella, S., Cauda, R., … Cassone, A. (2020). Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. Journal of Infection, 81(1), e24–e27. doi:10.1016/j.jinf.2020.03.058.

Epidemiology Group of Emergency Response Mechanism of Novel Coronavirus Pneumonia, Chinese Center for Disease Control and Prevention. (2020). Analysis of Epidemiological Characteristics of Novel Coronavirus Pneumonia. Chinese Journal of Epidemiology, 41(2): 145-151. doi:10.3760 /cma.j.issn.0254-6450.2020.02.003.

CDC COVID-19 Response Team, CDC COVID-19 Response Team, CDC COVID-19 Response Team, Bialek, S., Boundy, E., Bowen, V., ... & Sauber-Schatz, E. (2020). Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. Morbidity and mortality weekly report, 69(12), 343-346. doi:10.15585/mmwr.mm6912e2.

Kim, I.-C., Kim, J. Y., Kim, H. A., & Han, S. (2020). COVID-19-related myocarditis in a 21-year-old female patient. European Heart Journal, 41(19), 1859–1859. doi:10.1093/eurheartj/ehaa288.

Ottaviano, G., Carecchio, M., Scarpa, B., & Marchese-Ragona, R. (2020). Olfactory and rhinological evaluations in SARS-CoV-2 patients complaining of olfactory loss. Rhinology Journal, 0(0), 0–0. doi:10.4193/rhin20.136.

Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., & Shan, H. (2020). Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 158(6), 1831–1833.e3. doi:10.1053/j.gastro.2020.02.055.

Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., … Shen, H. (2020). Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences, 63(5), 706–711. doi:10.1007/s11427-020-1661-4.

Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., … Pinto, A. M. (2020). ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. European Journal of Human Genetics, 28(11), 1602–1614. doi:10.1038/s41431-020-0691-z.

Li, Q., Cao, Z., & Rahman, P. (2020). Genetic variability of human angiotensin‐converting enzyme 2 (hACE2) among various ethnic populations. Molecular Genetics & Genomic Medicine, 8(8). doi:10.1002/mgg3.1344.

Ovsyannikova, I. G., Haralambieva, I. H., Crooke, S. N., Poland, G. A., & Kennedy, R. B. (2020). The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity. Immunological Reviews, 296(1), 205–219. doi:10.1111/imr.12897.

Pinto, B. G. G., Oliveira, A. E. R., Singh, Y., Jimenez, L., Gonçalves, A. N. A., … Nakaya, H. I. (2020). ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. doi:10.1101/2020.03.21.20040261.

Russo, R., Andolfo, I., Lasorsa, V. A., Iolascon, A., & Capasso, M. (2020). Genetic analysis of the novel SARS-CoV-2 host receptor TMPRSS2 in different populations. doi:10.1101/2020.04.23.057190.

Zahn, L. M. (2020). HLA genetics and COVID-19. Science, 368(6493), 841.2–841. doi:10.1126/science.368.6493.841-b.

Kadkhoda, K. (2020). COVID-19: an Immunopathological View. mSphere, 5(2). doi:10.1128/msphere.00344-20.

Smatti, M. K., Al-Sarraj, Y. A., Albagha, O., & Yassine, H. M. (2020). Host Genetic Variants Potentially Associated With SARS-CoV-2: A Multi-Population Analysis. Frontiers in Genetics, 11. doi:10.3389/fgene.2020.578523.

Devaux, C. A., Rolain, J.-M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 105938. doi:10.1016/j.ijantimicag.2020.105938.

Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 241–246. doi:10.1016/j.dsx.2020.03.011.

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., , … Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. doi:10.1038/s41422-020-0282-0.

Amin, M., & Abbas, G. (2020). Docking study of chloroquine and hydroxychloroquine interaction with RNA binding domain of nucleocapsid phospho-protein – an in silico insight into the comparative efficacy of repurposing antiviral drugs. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2020.1775703.

Fung, K.-L., & Chan, P.-L. (2020). Comment on: COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. Journal of Antimicrobial Chemotherapy, 75(7), 2016–2017. doi:10.1093/jac/dkaa169.

Tripathy, S., Dassarma, B., Roy, S., Chabalala, H., & Matsabisa, M. G. (2020). A review on possible modes of action of chloroquine/hydroxychloroquine: repurposing against SAR-CoV-2 (COVID-19) pandemic. International Journal of Antimicrobial Agents, 56(2), 106028. doi:10.1016/j.ijantimicag.2020.106028.

Ferner, R. E., & Aronson, J. K. (2020). Chloroquine and hydroxychloroquine in covid-19. BMJ, m1432. doi:10.1136/bmj.m1432.

Finbloom, D. S., Silver, K., Newsome, D. A., & Gunkel, R. (1985). Comparison of hydroxychloroquine and chloroquine use and the development of retinal toxicity. The Journal of rheumatology, 12(4), 692-694.

Zhan, X., Dowell, S., Shen, Y., & Lee, D. L. (2020). Chloroquine to fight COVID-19: A consideration of mechanisms and adverse effects? Heliyon, 6(9), e04900. doi:10.1016/j.heliyon.2020.e04900.

U.S. Food & Drug (FDA), Medical Product Safety Information. Available online: https://www.fda.gov/safety/medical-product-safety-information/remdesivir-gilead-sciences-fda-warns-newly-discovered-potential-drug-interaction-may-reduce (accessed on February 2021).

Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., … Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11(1). doi:10.1038/s41467-019-13940-6.

Pruijssers, A. J., George, A. S., Schäfer, A., Leist, S. R., Gralinksi, L. E., Dinnon, K. H., … Sheahan, T. P. (2020). Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. doi:10.1101/2020.04.27.064279.

Tchesnokov, E., Feng, J., Porter, D., & Götte, M. (2019). Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses, 11(4), 326. doi:10.3390/v11040326.

Lo, M. K., Feldmann, F., Gary, J. M., Jordan, R., Bannister, R., Cronin, J., … de Wit, E. (2019). Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Science Translational Medicine, 11(494), eaau9242. doi:10.1126/scitranslmed.aau9242.

Malin, J. J., Suárez, I., Priesner, V., Fätkenheuer, G., & Rybniker, J. (2020). Remdesivir against COVID-19 and Other Viral Diseases. Clinical Microbiology Reviews, 34(1). doi:10.1128/cmr.00162-20.

Sreekanth Reddy, O., & Lai, W. (2020). Tackling COVID‐19 Using Remdesivir and Favipiravir as Therapeutic Options. ChemBioChem, 22(6), 939–948. doi:10.1002/cbic.202000595.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. doi:10.1038/s41586-020-2012-7.

Nukoolkarn, V., Lee, V. S., Malaisree, M., Aruksakulwong, O., & Hannongbua, S. (2008). Molecular dynamic simulations analysis of ritronavir and lopinavir as SARS-CoV 3CLpro inhibitors. Journal of Theoretical Biology, 254(4), 861–867. doi:10.1016/j.jtbi.2008.07.030.

Tahir ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. doi:10.1016/j.jpha.2020.03.009.

Osborne, V., Davies, M., Lane, S., Evans, A., Denyer, J., Dhanda, S., … Shakir, S. (2020). Lopinavir-Ritonavir in the Treatment of COVID-19: A Dynamic Systematic Benefit-Risk Assessment. Drug Safety, 43(8), 809–821. doi:10.1007/s40264-020-00966-9.

Türsen, Ü., Türsen, B., & Lotti, T. (2020). Cutaneous sıde‐effects of the potential COVID-19 drugs. Dermatologic Therapy, 33(4). doi:10.1111/dth.13476.

Zampino, R., Mele, F., Florio, L. L., Bertolino, L., Andini, R., Galdo, M., … Durante-Mangoni, E. (2020). Liver injury in remdesivir-treated COVID-19 patients. Hepatology International, 14(5), 881–883. doi:10.1007/s12072-020-10077-3.

Pendyala, B., & Patras, A. (2020). In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). ChemRix.

Bharti, S., Malhotra, P., & Hirsch, B. (2016). Acute intermittent porphyria precipitated by atazanavir/ritonavir. International Journal of STD & AIDS, 27(13), 1234–1235. doi:10.1177/0956462416633981.

Owa, A. B., & Owa, O. T. (2020). Lopinavir/ritonavir use in Covid-19 infection: is it completely non-beneficial? Journal of Microbiology, Immunology and Infection, 53(5), 674–675. doi:10.1016/j.jmii.2020.05.014.

Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., … Wei, M. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. doi:10.1056/nejmoa2001282.

Huang, J., Tao, G., Liu, J., Cai, J., Huang, Z., & Chen, J. (2020). Current Prevention of COVID-19: Natural Products and Herbal Medicine. Frontiers in Pharmacology, 11. doi:10.3389/fphar.2020.588508.

Shin, D., Mukherjee, R., Grewe, D., Bojkova, D., Baek, K., Bhattacharya, A., … Dikic, I. (2020). Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 587(7835), 657–662. doi:10.1038/s41586-020-2601-5.

Boozari, M., & Hosseinzadeh, H. (2020). Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytotherapy Research, 35(2), 864–876. doi:10.1002/ptr.6873.

Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., … Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. doi:10.1016/j.apsb.2020.02.008.

Muchtaridi, M., Fauzi, M., Khairul Ikram, N. K., Mohd Gazzali, A., & Wahab, H. A. (2020). Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules, 25(17), 3980. doi:10.3390/molecules25173980.

Shirazi, F. M., Banerji, S., Nakhaee, S., & Mehrpour, O. (2020). Effect of angiotensin II blockers on the prognosis of COVID-19: a toxicological view. European Journal of Clinical Microbiology & Infectious Diseases, 39(10), 2001–2002. doi:10.1007/s10096-020-03932-6.

Wu, C.-Y., Lin, Y.-S., Yang, Y.-H., Shu, L.-H., Cheng, Y.-C., & Liu, H. T. (2020). GB-2 inhibits ACE2 and TMPRSS2 expression: In vivo and in vitro studies. Biomedicine & Pharmacotherapy, 132, 110816. doi:10.1016/j.biopha.2020.110816.

Senthil Kumar, K. J., Gokila Vani, M., Wang, C.-S., Chen, C.-C., Chen, Y.-C., Lu, L.-P., … Wang, S.-Y. (2020). Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells. Plants, 9(6), 770. doi:10.3390/plants9060770.

Abdelli, I., Hassani, F., Bekkel Brikci, S., & Ghalem, S. (2020). In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. Journal of Biomolecular Structure and Dynamics, 1–14. doi:10.1080/07391102.2020.1763199.

Kulkarni, S. A., Nagarajan, S. K., Ramesh, V., Palaniyandi, V., Selvam, S. P., & Madhavan, T. (2020). Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. Journal of Molecular Structure, 1221, 128823. doi:10.1016/j.molstruc.2020.128823.

Teisseyre, A., Uryga, A., & Michalak, K. (2021). Statins as inhibitors of voltage-gated potassium channels Kv1.3 in cancer cells. Journal of Molecular Structure, 1230, 129905. doi:10.1016/j.molstruc.2021.129905.

Seyed, M. A., Jantan, I., Bukhari, S. N. A., & Vijayaraghavan, K. (2016). A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. Journal of Agricultural and Food Chemistry, 64(4), 725–737. doi:10.1021/acs.jafc.5b05993.

Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2020). Natural compounds fromClerodendrumspp. as possible therapeutic candidates against SARS-CoV-2: Anin silicoinvestigation. Journal of Biomolecular Structure and Dynamics, 1–12. doi:10.1080/07391102.2020.1780947.

Naidoo, D., Roy, A., Kar, P., Mutanda, T., & Anandraj, A. (2020). Cyanobacterial metabolites as promising drug leads against the Mproand PLproof SARS-CoV-2: anin silicoanalysis. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2020.1794972.

Song, S., Peng, H., Wang, Q., Liu, Z., Dong, X., Wen, C., … Zhu, B. (2020). Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food & Function, 11(9), 7415–7420. doi:10.1039/d0fo02017f.

Sepay, N., Sekar, A., Halder, U. C., Alarifi, A., & Afzal, M. (2021). Anti-COVID-19 terpenoid from marine sources: A docking, admet and molecular dynamics study. Journal of Molecular Structure, 1228, 129433. doi:10.1016/j.molstruc.2020.129433.

He, L.-H., Ren, L.-F., Li, J.-F., Wu, Y.-N., Li, X., & Zhang, L. (2020). Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.01388.

Rao, P., Shukla, A., Parmar, P., Rawal, R. M., Patel, B., Saraf, M., & Goswami, D. (2020). Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophysical Chemistry, 264, 106425. doi:10.1016/j.bpc.2020.106425.

Full Text: PDF

DOI: 10.28991/SciMedJ-2021-0302-9


  • There are currently no refbacks.

Copyright (c) 2021 Bidisha Ghosh, Soumyadev Sarkar, Nayim Sepay, Kaustuv Das, Sukhen Das, Sujata Dastidar