Preparation and Evaluation of Bioactivity of Porous Bioglass Tablets for Bone Tissue Regeneration

Rohith Kumar R., Sangeetha Ashok Kumar, K. Periyasami Bhuvana


The present study endeavors in the preparation and characterization of semi crystalline 45S5 bioglass (BG) (SiO2-CaO-P2O5) through sol gel process. Dry press mold technique was used in the preparation porous BG tablets to examine the bioactivity through invitro studies. The synthesized BG powder was subjected to structural, morphological and mechanical characterization and the bioactivity was examined in vitro by immersing the BG tablet in the Simulated Body Fluid (SBF) solution. XRD pattern and the SEM micrographs revealed the semi crystalline nature of BG with spherical morphology. The elemental analysis confirms the presence of vital constituents required for Bone regeneration (Calcium, Phosphorous, Silica, and Sodium). The surface characterization of BG tablet reveals the pores structure of average pore size of 240nm which contributed to the high surface activity resulting in formation of carbonated hydroxy apatite (HCAP) when immersed in SBF. The disintegration studies denoted the stabilization period was after 48 of immersion of BG tablets in SBF solution. The compressive strength measurement of the tablet also reveals the higher mechanical stability.


Sol-gel Bioglass; Porous tablet; Bioactivity; Carbonated Hydroxy apatite; Bone Tissue Regeneration; Mechanical Stability.


Navarro, M., Michiardi, A., Castaño, O., & Planell, J.. (2008). Biomaterials in orthopaedics. Journal of the Royal Society Interface, 5(27), 1137–1158. doi:10.1098/rsif.2008.0151.

Rahaman, M. N., Day, D. E., Sonny Bal, B., Fu, Q., Jung, S. B., Bonewald, L. F., & Tomsia, A. P. (2011). Bioactive glass in tissue engineering. Acta Biomaterialia, 7(6), 2355–2373. doi:10.1016/j.actbio.2011.03.016.

Hench, L. L. (2013). Chronology of Bioactive Glass Development and Clinical Applications. New Journal of Glass and Ceramics, 03(02), 67–73. doi:10.4236/njgc.2013.32011.

Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967–978. doi:10.1007/s10856-006-0432-z.

Wilson, J., Pigott, G. H., Schoen, F. J., & Hench, L. L. (1981). Toxicology and biocompatibility of bioglasses. Journal of Biomedical Materials Research, 15(6), 805–817. doi:10.1002/jbm.820150605.

Martin, R. A., Twyman, H., Qiu, D., Knowles, J. C., & Newport, R. J. (2008). A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass® using surface sensitive shallow angle X-ray diffraction. Journal of Materials Science: Materials in Medicine, 20(4), 883–888. doi:10.1007/s10856-008-3661-5.

Li, R., Clark, A. E., & Hench, L. L. (1991). An investigation of bioactive glass powders by sol-gel processing. Journal of Applied Biomaterials, 2(4), 231–239. doi:10.1002/jab.770020403.

Peltola, T., Jokinen, M., Rahiala, H., Levänen, E., Rosenholm, J. B., Kangasniemi, I., & Yli‐Urpo, A. (1999). Calcium phosphate formation on porous sol‐gel‐derived SiO2 and CaO‐P2O5‐SiO2 substrates in vitro. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 44(1), 12-21. doi: 10.1002/(SICI)1097-4636(199901)44:1<12::AID-JBM2>3.0.CO;2-E.

Faure, J., Drevet, R., Lemelle, A., Ben Jaber, N., Tara, A., El Btaouri, H., & Benhayoune, H. (2015). A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Materials Science and Engineering: C, 47, 407–412. doi:10.1016/j.msec.2014.11.045.

Chen, J., Zeng, L., Chen, X., Liao, T., & Zheng, J. (2018). Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro. Bioactive Materials, 3(3), 315–321. doi:10.1016/j.bioactmat.2017.11.004.

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. doi:10.1016/j.biomaterials.2006.01.017.

Hong, Z., Liu, A., Chen, L., Chen, X., & Jing, X. (2009). Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method. Journal of Non-Crystalline Solids, 355(6), 368–372. doi:10.1016/j.jnoncrysol.2008.12.003.

Pozdnyakov, V. A. (2003). Generalized size-dependent structural states of materials with an ultrafine structure. Crystallography Reports, 48(4), 701–704. doi:10.1134/1.1595199.

Shin, S., Song, I., & Um, S. (2015). Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials, 5(3), 1351–1365. doi:10.3390/nano5031351.

Pirayesh, H., & Nychka, J. A. (2013). Sol-Gel Synthesis of Bioactive Glass-Ceramic 45S5 and itsin vitroDissolution and Mineralization Behavior. Journal of the American Ceramic Society, 96(5), 1643–1650. doi:10.1111/jace.12190.

Mabrouk, M., Mostafa, A. A., Oudadesse, H., Mahmoud, A. A., & El-Gohary, M. I. (2014). Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceramics International, 40(3), 4833–4845. doi:10.1016/j.ceramint.2013.09.033.

Full Text: PDF

DOI: 10.28991/SciMedJ-2019-0103-1


  • There are currently no refbacks.

Copyright (c) 2020 Sangeetha Ashok Kumar