A Prevalence Risk Analysis of Waterborne Transmission of SARS-CoV-2

Abdullah R. Alanzi, Mohammad A. Parvez, Abdulrahman R. Alruwaili, Mohammad K. Parvez


We statistically analyzed 31 published studies comprising 113 water samples collected from 17 countries for SARS-CoV-2 positivity. The pooled estimated prevalence of viral RNA in the tested samples was 64.1% [95% CI:51.6%, 74.9%] with considerable heterogeneity (I2: 90.1%, P<0.001). Notably, wastewater, sewage, hospital septic-tank, biological sludge, and effluent demonstrated statistical significance (P<0.05) for RNA positivity. The country-wise pooled estimated prevalence for Germany, India, Turkey, Spain, the Netherlands, Italy, the USA, and Japan were 88% (76%, 94%), 85% (33%, 98%), 83% (43%, 97%), 78% (54%, 92%), 60% (41%, 77%), 53% (36%, 70%), 53% (27%, 77%), and 25% (13%,43%), respectively. Further subgroup analyses showed that the prevalence of SARS-CoV-2 among the tested water samples was significantly higher in middle-income countries compared to high-income groups. Our data, therefore, suggests wastewater-based epidemiological surveillance as an important tool for community-wide monitoring of SARS-CoV-2.


Doi: 10.28991/SciMedJ-2022-04-03-02

Full Text: PDF


SARS-CoV-2; COVID-19; Fecal Shedding; Waterborne Spread; Wastewater Surveillance.


Desselberger, U. (2017). Viral gastroenteritis. Medicine, 45(11), 690–694. doi:10.1016/j.mpmed.2017.08.005.

Macnaughton, M. R., & Davies, H. A. (1981). Human enteric coronaviruses. Archives of Virology, 70(4), 301–313. doi:10.1007/BF01320245.

Caul, E. O., Paver, W. K., & Clarke, S. K. R. (1975). Coronavirus Particles in faecal from Patients with Gastroenteritis. The Lancet, 305(7917), 1192. doi:10.1016/S0140-6736(75)93176-1.

Mathan, M., Swaminathan, S. P., Mathan, V. I., Yesudoss, S., & Baker, S. J. (1975). Pleomorphic Virus-Like Particles in Human Fæces. The Lancet, 305(7915), 1068–1069. doi:10.1016/s0140-6736(75)91832-2.

Lim, Y., Ng, Y., Tam, J., & Liu, D. (2016). Human Coronaviruses: A Review of Virus–Host Interactions. Diseases, 4(4), 26. doi:10.3390/diseases4030026.

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. doi:10.1038/s41586-020-2008-3.

Parvez, M. K., Jagirdar, R. M., Purty, R. S., Venkata, S. K. S., Agrawal, V., Kumar, J., & Tiwari, N. (2020). COVID-19 pandemic: Understanding the emergence, pathogenesis and containment (Review). World Academy of Sciences Journal, 2(5), 18. doi:10.3892/wasj.2020.59.

Yu, P., Zhu, J., Zhang, Z., & Han, Y. (2020). A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. Journal of Infectious Diseases, 221(11), 1757–1761. doi:10.1093/infdis/jiaa077.

Furukawa, N. W., Furukawa, N. W., Brooks, J. T., & Sobel, J. (2020). Evidence Supporting Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 while Presymptomatic or Asymptomatic. Emerging Infectious Diseases, 26(7), E1–E6. doi:10.3201/eid2607.201595.

Parvez, M. K. (2020). Gastrointestinal and hepatobiliary manifestations of coronavirus disease-19: Potential implications for healthcare resource-deficient countries. Gastroenterology & Hepatology Letters, 2(1). doi:10.18063/ghl.v2i1.250.

Gu, J., Han, B., & Wang, J. (2020). COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral Transmission. Gastroenterology, 158(6), 1518–1519. doi:10.1053/j.gastro.2020.02.054.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. doi:10.1001/jama.2020.1585.

Zhang, W., Du, R. H., Li, B., Zheng, X. S., Yang, X. Lou, Hu, B., Wang, Y. Y., Xiao, G. F., Yan, B., Shi, Z. L., & Zhou, P. (2020). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes and Infections, 9(1), 386–389. doi:10.1080/22221751.2020.1729071.

Xu, Y., Li, X., Zhu, B., Liang, H., Fang, C., Gong, Y., Guo, Q., Sun, X., Zhao, D., Shen, J., Zhang, H., Liu, H., Xia, H., Tang, J., Zhang, K., & Gong, S. (2020). Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, 26(4), 502–505. doi:10.1038/s41591-020-0817-4.

Tang, A., Tong, Z. D., Wang, H. L., Dai, Y. X., Li, K. F., Liu, J. N., Wu, W. J., Yuan, C., Yu, M. L., Li, P., & Yan, J. B. (2020). Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerging Infectious Diseases, 26(6), 1337–1339. doi:10.3201/EID2606.20.0301.

Pan, Y., Zhang, D., Yang, P., Poon, L. L. M., & Wang, Q. (2020). Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20(4), 411–412. doi:10.1016/S1473-3099(20)30113-4.

Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y., Qu, X., Kuang, L., Fang, X., Mishra, N., Lu, J., Shan, H., Jiang, G., & Huang, X. (2020). Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The Lancet Gastroenterology and Hepatology, 5(5), 434–435. doi:10.1016/S2468-1253(20)30083-2.

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA - Journal of the American Medical Association, 323(18), 1843–1844. doi:10.1001/jama.2020.3786.

Parvez, M. K. (2021). Waterborne enteric coronaviruses and the SARS-CoV-2 disease. Journal of Gastroenterology and Hepatology Research, 3466-3469.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012. doi:10.1016/j.jclinepi.2009.06.005.

Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, G. D., Rennie, D., Moher, D., Becker, B. J., Sipe, T. A., & Thacker, S. B. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. Journal of the American Medical Association, 283(15), 2008–2012. doi:10.1001/jama.283.15.2008.

Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. (2020). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital, Ottawa, Canada. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on April 2022).

Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, … Pillai, S. K. (2020). First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine, 382(10), 929–936. doi:10.1056/nejmoa2001191.

Parvez, M. K. (2021). Water contamination of SARS-CoV-2: Risks and preventions. Frontiers in Infectious Diseases and Microbiology, 1, 1–3. doi:10.36879/fidm.21.000105.

Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research, 181, 115942. doi:10.1016/j.watres.2020.115942.

Wu, F., Zhang, J., Xiao, A., Gu, X., Lee, W. L., Armas, F., Kauffman, K., Hanage, W., Matus, M., Ghaeli, N., Endo, N., Duvallet, C., Poyet, M., Moniz, K., Washburne, A. D., Erickson, T. B., Chai, P. R., Thompson, J., & Alm, E. J. (2020). SARS-CoV-2 Titers in Wastewater Are Higher than Expected from Clinically Confirmed Cases. MSystems, 5(4), 00614–20. doi:10.1128/msystems.00614-20.

Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., ….., Thomas, K. V., & Mueller, J. F. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment, 728, 138764. doi:10.1016/j.scitotenv.2020.138764.

Wurtzer, S., Marechal, V., Mouchel, J. M., Maday, Y., Teyssou, R., Richard, E., Almayrac, J. L., & Moulin, L. (2020). Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020. Eurosurveillance, 25(50), 2000776. doi:10.2807/1560-7917.ES.2020.25.50.2000776.

Balboa, S., Mauricio-Iglesias, M., Rodriguez, S., Martínez-Lamas, L., Vasallo, F. J., Regueiro, B., & Lema, J. M. (2021). The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Science of the Total Environment, 772, 145268. doi:10.1016/j.scitotenv.2021.145268.

La Rosa, G., Iaconelli, M., Mancini, P., Bonanno Ferraro, G., Veneri, C., Bonadonna, L., Lucentini, L., & Suffredini, E. (2020). First detection of SARS-CoV-2 in untreated wastewaters in Italy. Science of the Total Environment, 736, 139652. doi:10.1016/j.scitotenv.2020.139652.

Rimoldi, S. G., Stefani, F., Gigantiello, A., Polesello, S., Comandatore, F., Mileto, D., Maresca, M., Longobardi, C., Mancon, A., Romeri, F., Pagani, C., Cappelli, F., Roscioli, C., Moja, L., Gismondo, M. R., & Salerno, F. (2020). Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Science of the Total Environment, 744, 140911. doi:10.1016/j.scitotenv.2020.140911.

Agrawal, S., Orschler, L., & Lackner, S. (2021). Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in Southern Germany. Scientific Reports, 11(1), 5372. doi:10.1038/s41598-021-84914-2.

Lodder, W., & de Roda Husman, A. M. (2020). SARS-CoV-2 in wastewater: potential health risk, but also data source. The Lancet Gastroenterology and Hepatology, 5(6), 533–534. doi:10.1016/S2468-1253(20)30087-X.

Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in the Netherlands. Environmental Science and Technology Letters, 7(7), 511–516. doi:10.1021/acs.estlett.0c00357.

Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020). Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 1(6), 100098. doi:10.1016/j.xcrm.2020.100098.

Peccia, J., Zulli, A., Brackney, D. E., Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A., …., Weinberger, D. M., & Omer, S. B. (2020). SARS-CoV-2 RNA concentrations in primary municipal sewage sludge as a leading indicator of COVID-19 outbreak dynamics. MedRxiv, 2020.05.19.20105999. doi:10.1101/2020.05.19.20105999.

Sherchan, S. P., Shahin, S., Ward, L. M., Tandukar, S., Aw, T. G., Schmitz, B., Ahmed, W., & Kitajima, M. (2020). First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Science of the Total Environment, 743, 140621. doi:10.1016/j.scitotenv.2020.140621.

Rosiles-González, G., Carrillo-Jovel, V. H., Alzate-Gaviria, L., Betancourt, W. Q., Gerba, C. P., Moreno-Valenzuela, O. A., Tapia-Tussell, R., & Hernández-Zepeda, C. (2021). Environmental Surveillance of SARS-CoV-2 RNA in Wastewater and Groundwater in Quintana Roo, Mexico. Food and Environmental Virology, 13(4), 457–469. doi:10.1007/s12560-021-09492-y.

Weidhaas, J., Aanderud, Z. T., Roper, D. K., VanDerslice, J., Gaddis, E. B., Ostermiller, J., Hoffman, K., Jamal, R., Heck, P., Zhang, Y., Torgersen, K., Laan, J. Vander, & LaCross, N. (2021). Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Science of the Total Environment, 775. doi:10.1016/j.scitotenv.2021.145790.

Martin, J., Klapsa, D., Wilton, T., Zambon, M., Bentley, E., Bujaki, E., Fritzsche, M., Mate, R., & Majumdar, M. (2020). Tracking SARS-CoV-2 in sewage: Evidence of changes in virus variant predominance during COVID-19 pandemic. Viruses, 12(10), 1144. doi:10.3390/v12101144.

Hata, A., Honda, R., & Honda, R. (2020). Potential Sensitivity of Wastewater Monitoring for SARS-CoV-2: Comparison with Norovirus Cases. Environmental Science and Technology, 54(11), 6451–6452. doi:10.1021/acs.est.0c02271.

Haramoto, E., Malla, B., Thakali, O., & Kitajima, M. (2020). First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. doi:10.1101/2020.06.04.20122747.

Kumar, M., Patel, A. K., Shah, A. V., Raval, J., Rajpara, N., Joshi, M., & Joshi, C. G. (2020). First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Science of the Total Environment, 746, 141326. doi:10.1016/j.scitotenv.2020.141326.

Hemalatha, M., Kiran, U., Kuncha, S. K., Kopperi, H., Gokulan, C. G., Mohan, S. V., & Mishra, R. K. (2021). Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: Comprehensive study. Science of the Total Environment, 768, 144704. doi:10.1016/j.scitotenv.2020.144704.

Arora, S., Nag, A., Sethi, J., Rajvanshi, J., Saxena, S., Shrivastava, S. K., & Gupta, A. B. (2020). Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Science and Technology, 82(12), 2823–2836. doi:10.2166/wst.2020.540.

Sharma, D., Nalavade, U., Kalgutkar, K., Gupta, N., & Deshpande, J. (2021). SARS-CoV-2 detection in sewage samples: Standardization of method & preliminary observations. Indian Journal of Medical Research, 153(1), 159–165. doi:10.4103/ijmr.IJMR_3541_20.

Tanhaei, M., Mohebbi, S. R., Hosseini, S. M., Rafieepoor, M., Kazemian, S., Ghaemi, A., Shamloei, S., Mirjalali, H., Asadzadeh Aghdaei, H., & Zali, M. R. (2021). The first detection of SARS-CoV-2 RNA in the wastewater of Tehran, Iran. Environmental Science and Pollution Research, 28(29), 38629–38636. doi:10.1007/s11356-021-13393-9.

Sharif, S., Ikram, A., Khurshid, A., Salman, M., Mehmood, N., Arshad, Y., Ahmad, J., Safdar, R. M., Angez, M., Alam, M. M., Rehman,… Ali, N. (2020). Detection of SARs-Coronavirus-2 in wastewater, using the existing environmental surveillance network: An epidemiological gateway to an early warning for COVID-19 in communities. MedRxiv, 2020.06.03.20121426. doi:10.1101/2020.06.03.20121426.

Hasan, S. W., Ibrahim, Y., Daou, M., Kannout, H., Jan, N., Lopes, A., Alsafar, H., & Yousef, A. F. (2021). Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. Science of the Total Environment, 764, 142929. doi:10.1016/j.scitotenv.2020.142929.

Orive, G., Lertxundi, U., & Barcelo, D. (2020). Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Science of the Total Environment, 732, 139298. doi:10.1016/j.scitotenv.2020.139298.

Kocamemi, B. A., Kurt, H., Sait, A., Sarac, F., Saatci, A. M., & Pakdemirli, B. (2020). SARS-CoV-2 Detection in Istanbul Wastewater Treatment Plant Sludges. MedRxiv, 12(7), 20099358. doi:10.1101/2020.05.12.20099358.

Guerrero-Latorre, L., Ballesteros, I., Villacrés, I. M., Granda, M. G., Freire, B. P., & Ríos-Touma, B. (2020). First SARS-CoV-2 detection in river water: Implications in low sanitation countries. MedRxiv. doi:10.1101/2020.06.14.20131201.

Full Text: PDF

DOI: 10.28991/SciMedJ-2022-04-03-02


  • There are currently no refbacks.

Copyright (c) 2023 Abdullah R Alanzi, Mohammad Ayan Parvez, Mohammad Khalid Parvez