Comparative Study on Prediction of Survival Event of Heart Failure Patients Using Machine Learning and Statistical Algorithms
Abstract
Â
Doi: 10.28991/SciMedJ-2023-05-02-01
Full Text: PDF
Keywords
References
CDC. (2023). Heart Failure. Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. U.S. Department of Health and Human Services. Available online: https://www.cdc.gov/heartdisease/heart_failure.htm (accessed on March 2023).
WebMD. (2023). Heart Attack. WebMD LLC. Available online: https://www.webmd.com/heart-disease/heart-disease-heart-attacks (accessed on March 2023).
CDC. (2023). Health Topics – Heart Disease and Heart Attack. Centers for Disease Control and Prevention. U.S. Department of Health and Human Services. Available online: https://www.cdc.gov/policy/polaris/healthtopics/heartdisease/index.html (accessed on March 2023).
WHO. (2023). Cardiovascular diseases (CVDs). World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on March 2023).
Sawano, M., Shiraishi, Y., Kohsaka, S., Nagai, T., Goda, A., Mizuno, A., Sujino, Y., Nagatomo, Y., Kohno, T., Anzai, T., Fukuda, K., & Yoshikawa, T. (2018). Performance of the MAGGIC heart failure risk score and its modification with the addition of discharge natriuretic peptides. ESC Heart Failure, 5(4), 610–619. doi:10.1002/ehf2.12278.
Cooper, L. B., & Hernandez, A. F. (2015). Assessing the Quality and Comparative Effectiveness of Team-Based Care for Heart Failure. Who, What, Where, When, and How. Heart Failure Clinics, 11(3), 499–506. doi:10.1016/j.hfc.2015.03.011.
Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making, 20(1), 16. doi:10.1186/s12911-020-1023-5.
Rahimi, K., Bennett, D., Conrad, N., Williams, T. M., Basu, J., Dwight, J., Woodward, M., Patel, A., McMurray, J., & MacMahon, S. (2014). Risk Prediction in Patients with Heart Failure. JACC: Heart Failure, 2(5), 440–446. doi:10.1016/j.jchf.2014.04.008.
Edgar, T.W., & Manz, D.O. (2017). Research methods for cyber security. Research Methods for Cyber Security: Syngress, 428.
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. doi:10.1016/j.cogr.2023.04.001.
Pocock, S. J., Ariti, C. A., McMurray, J. J. V., Maggioni, A., Køber, L., Squire, I. B., Swedberg, K., Dobson, J., Poppe, K. K., Whalley, G. A., & Doughty, R. N. (2013). Predicting survival in heart failure: A risk score based on 39 372 patients from 30 studies. European Heart Journal, 34(19), 1404–1413. doi:10.1093/eurheartj/ehs337.
Tohyama, T., Ide, T., Ikeda, M., Kaku, H., Enzan, N., Matsushima, S., Funakoshi, K., Kishimoto, J., Todaka, K., & Tsutsui, H. (2021). Machine learning-based model for predicting 1 year mortality of hospitalized patients with heart failure. ESC Heart Failure, 8(5), 4077–4085. doi:10.1002/ehf2.13556.
Newaz, A., Ahmed, N., & Shahriyar Haq, F. (2021). Survival prediction of heart failure patients using machine learning techniques. Informatics in Medicine Unlocked, 26, 100772. doi:10.1016/j.imu.2021.100772.
Zahid, F. M., Ramzan, S., Faisal, S., & Hussain, I. (2019). Gender based survival prediction models for heart failure patients: A case study in Pakistan. PLoS ONE, 14(2), 1-10. doi:10.1371/journal.pone.0210602.
Mamun, M., Farjana, A., Al Mamun, M., Ahammed, M. S., & Rahman, M. M. (2022). Heart failure survival prediction using machine learning algorithm: am I safe from heart failure?. In 2022 IEEE World AI IoT Congress (AIIoT), 194-200. doi:10.1109/AIIoT54504.2022.9817303
Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Lee, M. J., & Asadi, H. (2018). eDoctor: machine learning and the future of medicine. Journal of Internal Medicine, 284(6), 603–619. doi:10.1111/joim.12822.
Al Mehedi Hasan, M., Shin, J., Das, U., & Yakin Srizon, A. (2021). Identifying Prognostic Features for Predicting Heart Failure by Using Machine Learning Algorithm. ACM International Conference Proceeding Series, 40–46. doi:10.1145/3460238.3460245.
Al’Aref, S. J., Anchouche, K., Singh, G., Slomka, P. J., Kolli, K. K., Kumar, A., Pandey, M., Maliakal, G., Van Rosendael, A. R., Beecy, A. N., Berman, D. S., Leipsic, J., Nieman, K., Andreini, D., Pontone, G., Schoepf, U. J., Shaw, L. J., Chang, H. J., Narula, J., … Min, J. K. (2019). Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. European Heart Journal, 40(24), 1975–1986. doi:10.1093/eurheartj/ehy404.
Benjamins, J. W., Hendriks, T., Knuuti, J., Juarez-Orozco, L. E., & van der Harst, P. (2019). A primer in artificial intelligence in cardiovascular medicine. Netherlands Heart Journal, 27(9), 392–402. doi:10.1007/s12471-019-1286-6.
Fernandes, K., Chicco, D., Cardoso, J. S., & Fernandes, J. (2018). Supervised deep learning embeddings for the prediction of cervical cancer diagnosis. PeerJ Computer Science, 2018(5), 1-20. doi:10.7717/peerj-cs.154.
Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Cheng, S., Delling, F. N., Elkind, M. S. V., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., … Tsao, C. W. (2021). Heart Disease and Stroke Statistics - 2021 Update: A Report from the American Heart Association. Circulation, 143(8), E254–E743. doi:10.1161/CIR.0000000000000950.
Kaggle. (2019). Heart Failure Prediction. Kaggle. Available online: https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data (accessed on March 2023).
UCI Machine Learning Repository (2020). Heart Failure Clinical Records. Irvine, California, United States. Available online: https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records (accessed on March 2023).
Fernández, A., GarcÃa, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from imbalanced data sets Springer, Vol. 10, 377. doi:10.1007/978-3-319-98074-4.
Patidar, S., Kumar, D., & Rukwal, D. (2022). Comparative Analysis of Machine Learning Algorithms for Heart Disease Prediction. Advances in Transdisciplinary Engineering, 27, 64–69. doi:10.3233/ATDE220723.
Li, J. P., Haq, A. U., Din, S. U., Khan, J., Khan, A., & Saboor, A. (2020). Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access, 8, 107562–107582. doi:10.1109/ACCESS.2020.3001149.
DOI: 10.28991/SciMedJ-2023-05-02-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Oluwatoyin Bodunwa, Olubodun Aladeniyi, Oluwaseyi Oyewunmi