Beyond Thrombosis: the Role of Platelets in Pulmonary Hypertension

Salina Nicoleau, Beata Wojciak-Stothard

Abstract


Pulmonary Hypertension (PH) is a multifactorial and lethal disease, characterised by elevated pulmonary arterial pressure and progressive right heart failure. PH pathobiology rests on four pillars: vascular remodelling, vasoconstriction, inflammation and thrombosis. While vascular and inflammatory cells have been the focus of PH research over the past decades, platelets have received relatively less attention, despite their associations with key pathophysiological processes of the disease. Platelets contain a wide range of vasoactive, inflammatory and pro-thrombotic mediators, likely to promote PH development and progression. There is currently no cure for PH, and platelet-associated pathways may help identify new therapeutic strategies. This review summarises available evidence on the role of platelets in different forms of PH, and comments on the current state of platelet-targeting therapies. It also describes the latest advances in the in vitro technologies that enable exploration of platelet function under dynamic and physiologically relevant conditions.

 

Doi: 10.28991/SciMedJ-2020-0204-7

Full Text: PDF


Keywords


Pulmonary Hypertension; Platelets; Thrombosis; Vascular.

References


References

R. T. Schermuly, H. A. Ghofrani, M. R. Wilkins, and F. Grimminger, “Mechanisms of disease: pulmonary arterial hypertension,” Nat. Rev. Cardiol., vol. 8, no. 8, pp. 443–455, 2011.

C. Becattini et al., “Incidence of Chronic Thromboembolic Pulmonary Hypertension After a First Episode of Pulmonary Embolism,” Chest, vol. 130, no. 1, pp. 172–175, 2006.

G. Simonneau et al., “Updated Clinical Classification of Pulmonary Hypertension,” J. Am. Coll. Cardiol., vol. 62, no. 25, Supplement, pp. D34–D41, 2013.

M. Humbert et al., “Pulmonary Arterial Hypertension in France,” Am. J. Respir. Crit. Care Med., vol. 173, no. 9, pp. 1023–1030, May 2006.

D. B. Badesch et al., “Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry.,” Chest, vol. 137, no. 2, pp. 376–387, Feb. 2010.

O. K. M. et al., “Anticoagulation and Survival in Pulmonary Arterial Hypertension,” Circulation, vol. 129, no. 1, pp. 57–65, Jan. 2014.

V. V McLaughlin et al., “ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association.,” J. Am. Coll. Cardiol., vol. 53, no. 17, pp. 1573–1619, Apr. 2009.

G. Thabut et al., “Pulmonary Hemodynamics in Advanced COPD Candidates for Lung Volume Reduction Surgery or Lung Transplantation,” Chest, vol. 127, no. 5, pp. 1531–1536, May 2005.

W. L. Miller, D. E. Grill, and B. A. Borlaug, “Clinical Features, Hemodynamics, and Outcomes of Pulmonary Hypertension Due to Chronic Heart Failure With Reduced Ejection Fraction,” JACC Hear. Fail., vol. 1, no. 4, pp. 290 LP – 299, Aug. 2013.

F. Bursi et al., “Pulmonary pressures and death in heart failure: a community study,” J. Am. Coll. Cardiol., vol. 59, no. 3, pp. 222–231, Jan. 2012.

F. Thienemann et al., “The causes, treatment, and outcome of pulmonary hypertension in Africa: Insights from the Pan African Pulmonary Hypertension Cohort (PAPUCO) Registry.,” Int. J. Cardiol., vol. 221, pp. 205–211, Oct. 2016.

E. Mahmud et al., “Chronic Thromboembolic Pulmonary~Hypertension,” J. Am. Coll. Cardiol., vol. 71, no. 21, pp. 2468–2486, 2018.

H. Gall, M. M. Hoeper, M. J. Richter, W. Cacheris, B. Hinzmann, and E. Mayer, “An epidemiological analysis of the burden of chronic thromboembolic pulmonary hypertension in the USA, Europe and Japan,” Eur. Respir. Rev., vol. 26, no. 143, p. 160121, Mar. 2017.

Y. M. Ende-Verhaar et al., “Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary view of the published literature,” Eur. Respir. J., vol. 49, no. 2, p. 1601792, Feb. 2017.

M. M. Hoeper et al., “A global view of pulmonary hypertension.,” Lancet. Respir. Med., vol. 4, no. 4, pp. 306–322, Apr. 2016.

H. DONALD and E. J. E., “The Pathology of Hypertensive Pulmonary Vascular Disease ,” Circulation, vol. 18, no. 4, pp. 533–547, Oct. 1958.

E. S. YI et al., “Distribution of Obstructive Intimal Lesions and Their Cellular Phenotypes in Chronic Pulmonary Hypertension,” Am. J. Respir. Crit. Care Med., vol. 162, no. 4, pp. 1577–1586, Oct. 2000.

A. Zaiman, I. Fijalkowska, P. M. Hassoun, and R. M. Tuder, “One Hundred Years of Research in the Pathogenesis of Pulmonary Hypertension,” Am. J. Respir. Cell Mol. Biol., vol. 33, no. 5, pp. 425–431, Nov. 2005.

J. L. Wilson, J. Yu, L. Taylor, and P. Polgar, “Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK,” PLoS One, vol. 10, no. 4, pp. e0123662–e0123662, Apr. 2015.

S. Eddahibi et al., “Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension.,” J. Clin. Invest., vol. 108, no. 8, pp. 1141–1150, Oct. 2001.

X. Li et al., “Notch3 signaling promotes the development of pulmonary arterial hypertension.,” Nat. Med., vol. 15, no. 11, pp. 1289–1297, Nov. 2009.

Y. Yu et al., “Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension.,” Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 38, pp. 13861–13866, Sep. 2004.

C. Xinyu, W. Yu, and D. Lizhong, “Epigenetic Modulation in the Initiation and Progression of Pulmonary Hypertension,” Hypertension, vol. 74, no. 4, pp. 733–739, Oct. 2019.

A. Giaid et al., “Expression of Endothelin-1 in the Lungs of Patients with Pulmonary Hypertension,” N. Engl. J. Med., vol. 328, no. 24, pp. 1732–1739, Jun. 1993.

A. Giaid and D. Saleh, “Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with Pulmonary Hypertension,” N. Engl. J. Med., vol. 333, no. 4, pp. 214–221, Jul. 1995.

B. W. Christman et al., “An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension.,” N. Engl. J. Med., vol. 327, no. 2, pp. 70–75, Jul. 1992.

F. A. Masri et al., “Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension.,” Am. J. Physiol. Lung Cell. Mol. Physiol., vol. 293, no. 3, pp. L548-54, Sep. 2007.

W. Xu et al., “Alterations of cellular bioenergetics in pulmonary artery endothelial cells,” Proc. Natl. Acad. Sci., vol. 104, no. 4, pp. 1342 LP – 1347, Jan. 2007.

A. Huertas et al., “Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases,” Eur. Respir. J., vol. 51, no. 4, p. 1700745, Apr. 2018.

E. Soon et al., “Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension.,” Circulation, vol. 122, no. 9, pp. 920–927, Aug. 2010.

R. M. Tuder, B. Groves, D. B. Badesch, and N. F. Voelkel, “Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension.,” Am. J. Pathol., vol. 144, no. 2, pp. 275–285, Feb. 1994.

R. Kazimierczyk and K. Kamiński, “The role of platelets in the development and progression of pulmonary arterial hypertension,” Adv. Med. Sci., vol. 63, no. 2, pp. 312–316, 2018.

J. Bjornsson and W. D. Edwards, “Primary pulmonary hypertension: a histopathologic study of 80 cases.,” Mayo Clin. Proc., vol. 60, no. 1, pp. 16–25, Jan. 1985.

M. Humbert et al., “Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives,” Eur Respir J, vol. 53, no. 1, 2019.

M. M. Hoeper et al., “Definitions and diagnosis of pulmonary hypertension.,” J. Am. Coll. Cardiol., vol. 62, no. 25 Suppl, pp. D42-50, Dec. 2013.

N. Galiè et al., “2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension,” European respiratory journal., vol. 46, no. 4. Sheffield, U.K. :, pp. 903–975, 2015.

V. V McLaughlin et al., “Pulmonary Arterial Hypertension-Related Morbidity Is Prognostic for Mortality,” J. Am. Coll. Cardiol., vol. 71, no. 7, pp. 752–763, 2018.

J. R. Gilmour and W. Evans, “Primary pulmonary hypertension,” J. Pathol. Bacteriol., vol. 58, no. 4, pp. 687–697, Oct. 1946.

T. D. Le Cras, W. D. Hardie, K. Fagan, J. A. Whitsett, and T. R. Korfhagen, “Disrupted pulmonary vascular development and pulmonary hypertension in transgenic mice overexpressing transforming growth factor-alpha.,” Am. J. Physiol. Lung Cell. Mol. Physiol., vol. 285, no. 5, pp. L1046-54, Nov. 2003.

R. Geiger, R. M. F. Berger, J. Hess, A. J. J. C. Bogers, H. S. Sharma, and W. J. Mooi, “Enhanced expression of vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease,” J. Pathol., vol. 191, no. 2, pp. 202–207, Jun. 2000.

B. Ranchoux et al., “Endothelial-to-mesenchymal transition in pulmonary hypertension.,” Circulation, vol. 131, no. 11, pp. 1006–1018, Mar. 2015.

C. Zhou, M. I. Townsley, M. Alexeyev, N. F. Voelkel, and T. Stevens, “Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry,” Am. J. Physiol. Cell. Mol. Physiol., vol. 311, no. 3, pp. L560–L569, Jul. 2016.

F. M. G., K. V. A., and S. K. R., “Mature Vascular Endothelium Can Give Rise to Smooth Muscle Cells via Endothelial-Mesenchymal Transdifferentiation,” Circ. Res., vol. 90, no. 11, pp. 1189–1196, Jun. 2002.

M. G. Frid et al., “Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage.,” Am. J. Pathol., vol. 168, no. 2, pp. 659–669, Feb. 2006.

N. J. Davie et al., “Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells,” Am. J. Physiol. Cell. Mol. Physiol., vol. 286, no. 4, pp. L668–L678, Apr. 2004.

X.-X. Wang et al., “Transplantation of Autologous Endothelial Progenitor Cells May Be Beneficial in Patients With Idiopathic Pulmonary Arterial Hypertension,” J. Am. Coll. Cardiol., vol. 49, no. 14, pp. 1566 LP – 1571, Apr. 2007.

Y. D. Zhao, D. W. Courtman, Y. Deng, L. Kugathasan, Q. Zhang, and D. J. Stewart, “Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease.,” Circ. Res., vol. 96, no. 4, pp. 442–450, Mar. 2005.

L. Southgate, R. D. Machado, S. Gräf, and N. W. Morrell, “Molecular genetic framework underlying pulmonary arterial hypertension,” Nat. Rev. Cardiol., vol. 17, no. 2, pp. 85–95, 2020.

A. Carl et al., “Primary Pulmonary Hypertension Is Associated With Reduced Pulmonary Vascular Expression of Type II Bone Morphogenetic Protein Receptor,” Circulation, vol. 105, no. 14, pp. 1672–1678, Apr. 2002.

M. C. Gomez-Puerto et al., “Autophagy contributes to BMP type 2 receptor degradation and development of pulmonary arterial hypertension,” J. Pathol., vol. 249, no. 3, pp. 356–367, Nov. 2019.

K.-H. Hong et al., “Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension,” Circulation, vol. 118, no. 7, pp. 722–730, Aug. 2008.

J. H. Newman et al., “Mutation in the Gene for Bone Morphogenetic Protein Receptor II as a Cause of Primary Pulmonary Hypertension in a Large Kindred,” N. Engl. J. Med., vol. 345, no. 5, pp. 319–324, Aug. 2001.

P. Mehra et al., “Pulmonary hypertension in left heart disease,” Arch. Med. Sci., vol. 15, no. 1, pp. 262–273, Jan. 2019.

I. Opitz and M. B. Kirschner, “Molecular Research in Chronic Thromboembolic Pulmonary Hypertension,” Int. J. Mol. Sci., vol. 20, no. 3, p. 784, Feb. 2019.

L. Du et al., “Signaling Molecules in Nonfamilial Pulmonary Hypertension,” N. Engl. J. Med., vol. 348, no. 6, pp. 500–509, Feb. 2003.

A. A. R. Thompson and A. Lawrie, “Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension.,” Trends Mol. Med., vol. 23, no. 1, pp. 31–45, Jan. 2017.

T. V Inglesby, J. W. Singer, and D. S. Gordon, “Abnormal fibrinolysis in familial pulmonary hypertension,” Am. J. Med., vol. 55, no. 1, pp. 5–14, 1973.

G. G. Pietra et al., “Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry.,” Circulation, vol. 80, no. 5, pp. 1198–1206, Nov. 1989.

M. K. M., F. P. F., F. W. E., and G. Jeffrey, “Do Patients With Primary Pulmonary Hypertension Develop Extensive Central Thrombi?,” Circulation, vol. 91, no. 3, pp. 741–745, Feb. 1995.

L. A. Blauwet, W. D. Edwards, H. D. Tazelaar, and C. G. A. McGregor, “Surgical pathology of pulmonary thromboendarterectomy: a study of 54 cases from 1990 to 2001,” Hum. Pathol., vol. 34, no. 12, pp. 1290–1298, 2003.

K. M. Moser, W. R. Auger, and P. F. Fedullo, “Chronic major-vessel thromboembolic pulmonary hypertension.,” Circulation, vol. 81, no. 6, pp. 1735–1743, Jun. 1990.

M. Riedel, V. Stanek, J. Widimsky, and I. Prerovsky, “Longterm follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data.,” Chest, vol. 81, no. 2, pp. 151–158, Feb. 1982.

R. S. Sacks, C. V Remillard, N. Agange, W. R. Auger, P. A. Thistlethwaite, and J. X.-J. Yuan, “Molecular Biology of Chronic Thromboembolic Pulmonary Hypertension,” Semin. Thorac. Cardiovasc. Surg., vol. 18, no. 3, pp. 265–276, 2006.

P.-Z. Joanna et al., “Chronic Thromboembolic Pulmonary Hypertension (CTEPH),” Circulation, vol. 124, no. 18, pp. 1973–1981, Nov. 2011.

M. Wolf et al., “Thrombotic risk factors in pulmonary hypertension.,” Eur. Respir. J., vol. 15, no. 2, pp. 395–399, Feb. 2000.

D. Bonderman et al., “High prevalence of elevated clotting factor VIII in chronic thromboembolic pulmonary hypertension.,” Thromb. Haemost., vol. 90, no. 3, pp. 372–376, Sep. 2003.

T. A. Morris, J. J. Marsh, P. G. Chiles, W. R. Auger, P. F. Fedullo, and V. L. Woods, “Fibrin Derived from Patients with Chronic Thromboembolic Pulmonary Hypertension Is Resistant to Lysis,” Am. J. Respir. Crit. Care Med., vol. 173, no. 11, pp. 1270–1275, Jun. 2006.

J. Suntharalingam et al., “Fibrinogen Aα Thr312Ala polymorphism is associated with chronic thromboembolic pulmonary hypertension,” Eur. Respir. J., vol. 31, no. 4, pp. 736 LP – 741, Apr. 2008.

D. Bonderman et al., “Medical conditions increasing the risk of chronic thromboembolic pulmonary hypertension.,” Thromb. Haemost., vol. 93, no. 3, pp. 512–516, Mar. 2005.

D. Zabini et al., “Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients,” Eur. Respir. J., vol. 44, no. 4, pp. 951–962, 2014.

R. Azarian et al., “Lung perfusion scans and hemodynamics in acute and chronic pulmonary embolism.,” J. Nucl. Med., vol. 38, no. 6, pp. 980–983, Jun. 1997.

K. M. Moser and C. M. Bioor, “Pulmonary Vascular Lesions Occurring in Patients With Chronic Major Vessel Thromboembolic Pulmonary Hypertension,” Chest, vol. 103, no. 3, pp. 685–692, 1993.

S. Sakao, H. Hao, N. Tanabe, Y. Kasahara, K. Kurosu, and K. Tatsumi, “Endothelial-like cells in chronic thromboembolic pulmonary hypertension: crosstalk with myofibroblast-like cells,” Respir. Res., vol. 12, no. 1, p. 109, 2011.

A. L. Firth, W. Yao, A. Ogawa, M. M. Madani, G. Y. Lin, and J. X.-J. Yuan, “Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension,” Am. J. Physiol. Physiol., vol. 298, no. 5, pp. C1217–C1225, Feb. 2010.

P. Egermayer and A. J. Peacock, “Is pulmonary embolism a common cause of chronic pulmonary hypertension? Limitations of the embolic hypothesis,” Eur. Respir. J., vol. 15, no. 3, pp. 440 LP – 448, Mar. 2000.

J. Bizzozero, “Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung,” Arch. für Pathol. Anat. und Physiol. und für Klin. Med., vol. 90, no. 2, pp. 261–332, 1882.

J. H. WRIGHT, “The Origin and Nature of the Blood Plates,” Bost. Med. Surg. J., vol. 154, no. 23, pp. 643–645, Jun. 1906.

K. Ghoshal and M. Bhattacharyya, “Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis,” ScientificWorldJournal., vol. 2014, p. 781857, Mar. 2014.

E. A. Trowbridge et al., “The origin of platelet count and volume.,” Clin. Phys. Physiol. Meas. an Off. J. Hosp. Phys. Assoc. Dtsch. Gesellschaft fur Medizinische Phys. Eur. Fed. Organ. Med. Phys., vol. 5, no. 3, pp. 145–170, Aug. 1984.

J. R. Stratton, P. J. Ballem, T. Gernsheimer, M. Cerqueira, and S. J. Slichter, “Platelet destruction in autoimmune thrombocytopenic purpura: kinetics and clearance of indium-111-labeled autologous platelets.,” J. Nucl. Med., vol. 30, no. 5, pp. 629–637, May 1989.

H. H. Versteeg, J. W. M. Heemskerk, M. Levi, and P. H. Reitsma, “New Fundamentals in Hemostasis,” Physiol. Rev., vol. 93, no. 1, pp. 327–358, Jan. 2013.

M. Hoffman and D. M. Monroe, “A Cell-based Model of Hemostasis,” Thromb Haemost, vol. 85, no. 06, pp. 958–965, 2001.

A. Vine, “RECENT ADVANCES IN HAEMOSTASIS AND THROMBOSIS.,” Retina., vol. 29, no. 1. Philadelphia :, p. 1, 2009.

T. A. Drake, J. H. Morrissey, and T. S. Edgington, “Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis.,” Am. J. Pathol., vol. 134, no. 5, pp. 1087–1097, May 1989.

M. C. Lin et al., “Shear stress induction of the tissue factor gene,” J. Clin. Invest., vol. 99, no. 4, pp. 737–744, Feb. 1997.

S. F. Yan et al., “Protein kinase C-beta and oxygen deprivation. A novel Egr-1-dependent pathway for fibrin deposition in hypoxemic vasculature.,” J. Biol. Chem., vol. 275, no. 16, pp. 11921–11928, Apr. 2000.

K. Motohiro, B. Florian, A. Tadao, K. H. A., K. Jörg, and V. Christiane, “Platelet-Derived Growth Factor Induces Tissue Factor Expression in Vascular Smooth Muscle Cells via Activation of Egr-1,” Hypertension, vol. 44, no. 6, pp. 944–951, Dec. 2004.

A. D. Schecter et al., “Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells.,” J. Biol. Chem., vol. 272, no. 45, pp. 28568–28573, Nov. 1997.

P. L. A. Giesen et al., “Blood-borne tissue factor: Another view of thrombosis,” Proc. Natl. Acad. Sci., vol. 96, no. 5, pp. 2311 LP – 2315, Mar. 1999.

K. J. Kao, S. V Pizzo, and P. A. McKee, “Demonstration and characterization of specific binding sites for factor VIII/von Willebrand factor on human platelets.,” J. Clin. Invest., vol. 63, no. 4, pp. 656–664, Apr. 1979.

J. W. Weisel, C. Nagaswami, G. Vilaire, and J. S. Bennett, “Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy.,” J. Biol. Chem., vol. 267, no. 23, pp. 16637–16643, Aug. 1992.

S. Goto, Y. Ikeda, E. Saldívar, and Z. M. Ruggeri, “Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions.,” J. Clin. Invest., vol. 101, no. 2, pp. 479–486, 1998.

M. Kalafatis, N. A. Swords, M. D. Rand, and K. G. Mann, “Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1227, no. 3, pp. 113–129, 1994.

P. Blair and R. Flaumenhaft, “Platelet alpha-granules: basic biology and clinical correlates,” Blood Rev., vol. 23, no. 4, pp. 177–189, Jul. 2009.

H. Holmsen and H. J. Weiss, “Secretable storage pools in platelets.,” Annu. Rev. Med., vol. 30, pp. 119–134, 1979.

C. Antoniades, C. Bakogiannis, D. Tousoulis, M. Demosthenous, and K. M. and C. Stefanadis, “Platelet Activation in Atherogenesis Associated with Low-Grade Inflammation,” Inflammation & Allergy - Drug Targets (Discontinued), vol. 9, no. 5. pp. 334–345, 2010.

E. Boilard et al., “Platelets Amplify Inflammation in Arthritis via Collagen-Dependent Microparticle Production,” Science (80-. )., vol. 327, no. 5965, pp. 580–583, 2010.

P. Coral-Alvarado et al., “Potential biomarkers for detecting pulmonary arterial hypertension in patients with systemic sclerosis.,” Rheumatol. Int., vol. 29, no. 9, pp. 1017–1024, Jul. 2009.

A. Cefle et al., “Pulmonary hypertension in systemic lupus erythematosus: relationship with antiphospholipid antibodies and severe disease outcome.,” Rheumatol. Int., vol. 31, no. 2, pp. 183–189, Feb. 2011.

S. Palta, R. Saroa, and A. Palta, “Overview of the coagulation system,” Indian J. Anaesth., vol. 58, no. 5, pp. 515–523, Sep. 2014.

N. G. Kumar, A. Clark, E. Roztocil, X. Caliste, D. L. Gillespie, and J. P. Cullen, “Fibrinolytic activity of endothelial cells from different venous beds.,” J. Surg. Res., vol. 194, no. 1, pp. 297–303, Mar. 2015.

R. M. Palmer, A. G. Ferrige, and S. Moncada, “Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.,” Nature, vol. 327, no. 6122, pp. 524–526, Jun. 1987.

S. Moncada, R. Gryglewski, S. Bunting, and J. R. Vane, “An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation.,” Nature, vol. 263, no. 5579, pp. 663–665, Oct. 1976.

R. Botting and J. R. Vane, “Mediators and the Anti-Thrombotic Properties of the Vascular Endothelium,” Ann. Med., vol. 21, no. 1, pp. 31–38, Jan. 1989.

E. Westein, A. D. van der Meer, M. J. E. Kuijpers, J.-P. Frimat, A. van den Berg, and J. W. M. Heemskerk, “Atherosclerotic geometries exacerbate pathological thrombus formation post-stenosis in a von Willebrand factor-dependent manner,” Proc. Natl. Acad. Sci., vol. 110, no. 4, pp. 1357 LP – 1362, Jan. 2013.

A. Jain et al., “Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics.,” Clin. Pharmacol. Ther., vol. 103, no. 2, pp. 332–340, Feb. 2018.

P. R. Eisenberg, C. Lucore, L. Kaufman, B. E. Sobel, A. S. Jaffe, and S. Rich, “Fibrinopeptide A levels indicative of pulmonary vascular thrombosis in patients with primary pulmonary hypertension.,” Circulation, vol. 82, no. 3, pp. 841–847, Sep. 1990.

S. M. Kawut, E. M. Horn, K. K. Berekashvili, A. C. Widlitz, E. B. Rosenzweig, and R. J. Barst, “von Willebrand factor independently predicts long-term survival in patients with pulmonary arterial hypertension.,” Chest, vol. 128, no. 4, pp. 2355–2362, Oct. 2005.

A. Tournier et al., “Calibrated automated thrombography demonstrates hypercoagulability in patients with idiopathic pulmonary arterial hypertension,” Thromb. Res., vol. 126, no. 6, pp. e418–e422, 2010.

R. J. White et al., “Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension,” Am. J. Physiol. Cell. Mol. Physiol., vol. 293, no. 3, pp. L583–L590, Sep. 2007.

A. A. Lopes et al., “Plasma von Willebrand factor as a predictor of survival in pulmonary arterial hypertension associated with congenital heart disease.,” Brazilian J. Med. Biol. Res. = Rev. Bras. Pesqui. medicas e Biol., vol. 44, no. 12, pp. 1269–1275, Dec. 2011.

R. P. Weerackody, D. J. Welsh, R. M. Wadsworth, and A. J. Peacock, “Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction.,” Am. J. Physiol. Heart Circ. Physiol., vol. 296, no. 5, pp. H1312-20, May 2009.

T. D. Warner, “Influence of endothelial mediators on the vascular smooth muscle and circulating platelets and blood cells,” Int. Angiol., vol. 15, no. 2, pp. 93–99, 1996.

P. S. Frenette, R. C. Johnson, R. O. Hynes, and D. D. Wagner, “Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin,” Proc. Natl. Acad. Sci., vol. 92, no. 16, pp. 7450 LP – 7454, Aug. 1995.

T. M. McIntyre, S. M. Prescott, A. S. Weyrich, and G. A. Zimmerman, “Cell-cell interactions: leukocyte-endothelial interactions,” Curr. Opin. Hematol., vol. 10, no. 2, 2003.

R. P. McEver, J. H. Beckstead, K. L. Moore, L. Marshall-Carlson, and D. F. Bainton, “GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies.,” J. Clin. Invest., vol. 84, no. 1, pp. 92–99, Jul. 1989.

A. Bernardo, C. Ball, L. Nolasco, J. F. Moake, and J. Dong, “Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow.,” Blood, vol. 104, no. 1, pp. 100–106, Jul. 2004.

A. B. Federici, R. Bader, S. Pagani, M. L. Colibretti, L. De Marco, and P. M. Mannucci, “Binding of von Willebrand factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size.,” Br. J. Haematol., vol. 73, no. 1, pp. 93–99, Sep. 1989.

B. Savage, E. Saldívar, and Z. M. Ruggeri, “Initiation of Platelet Adhesion by Arrest onto Fibrinogen or Translocation on von Willebrand Factor,” Cell, vol. 84, no. 2, pp. 289–297, Jan. 1996.

L. A. Sporn, V. J. Marder, and D. D. Wagner, “Inducible secretion of large, biologically potent von Willebrand factor multimers.,” Cell, vol. 46, no. 2, pp. 185–190, Jul. 1986.

M. Arya et al., “Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers,” Blood, vol. 99, no. 11, pp. 3971–3977, Jun. 2002.

T. A. Doggett et al., “Selectin-Like Kinetics and Biomechanics Promote Rapid Platelet Adhesion in Flow: The GPIbα-vWF Tether Bond,” Biophys. J., vol. 83, no. 1, pp. 194–205, Jul. 2002.

P. André et al., “Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins.,” Blood, vol. 96, no. 10, pp. 3322–3328, Nov. 2000.

Z. M. Ruggeri, J. N. Orje, R. Habermann, A. B. Federici, and A. J. Reininger, “Activation-independent platelet adhesion and aggregation under elevated shear stress,” Blood, vol. 108, no. 6, pp. 1903–1910, Sep. 2006.

P. S. Frenette et al., “P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo.,” J. Exp. Med., vol. 191, no. 8, pp. 1413–1422, Apr. 2000.

G. M. Romo et al., “The Glycoprotein Ib-IX-V Complex Is a Platelet Counterreceptor for P-Selectin,” J. Exp. Med., vol. 190, no. 6, pp. 803–814, Sep. 1999.

da C. M. Paula et al., “P-Selectin Glycoprotein Ligand-1 Is Expressed on Endothelial Cells and Mediates Monocyte Adhesion to Activated Endothelium,” Arterioscler. Thromb. Vasc. Biol., vol. 27, no. 5, pp. 1023–1029, May 2007.

T. Bombeli, B. R. Schwartz, and J. M. Harlan, “Adhesion of activated platelets to endothelial cells: Evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), α(v)β3 integrin, and GPIbα,” J. Exp. Med., vol. 187, no. 3, pp. 329–339, 1998.

Y. A. Naimushin and A. V Mazurov, “Von Willebrand factor can support platelet aggregation via interaction with activated GPIIb-IIIa and GPIb.,” Platelets, vol. 15, no. 7, pp. 419–425, Nov. 2004.

S. Massberg et al., “Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo.,” Blood, vol. 94, no. 11, pp. 3829–3838, Dec. 1999.

T. Mathur et al., “Organ-on-chips made of blood: endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips.,” Lab Chip, vol. 19, no. 15, pp. 2500–2511, Jul. 2019.

G. Meinrad et al., “Vitronectin Receptor (αvβ3) Mediates Platelet Adhesion to the Luminal Aspect of Endothelial Cells ,” Circulation, vol. 96, no. 6, pp. 1809–1818, Sep. 1997.

M. M. Oguz, A. D. Oguz, C. Sanli, and A. Cevik, “Serum levels of soluble ICAM-1 in children with pulmonary artery hypertension.,” Texas Hear. Inst. J., vol. 41, no. 2, pp. 159–164, Apr. 2014.

J. Arthur Ataam et al., “ICAM-1 promotes the abnormal endothelial cell phenotype in chronic thromboembolic pulmonary hypertension,” J. Hear. Lung Transplant., vol. 38, no. 9, pp. 982–996, 2019.

V. J. Burton, L. I. Ciuclan, A. M. Holmes, D. M. Rodman, C. Walker, and D. C. Budd, “Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function.,” Blood, vol. 117, no. 1, pp. 333–341, Jan. 2011.

Q. L. Nguyen et al., “Platelets from pulmonary hypertension patients show increased mitochondrial reserve capacity.,” JCI insight, vol. 2, no. 5, p. e91415, Mar. 2017.

H. Suzuki et al., “Microangiopathic Hemolytic Anemia and Thrombocytopenia in a Child with Atrial Septal Defect and Pulmonary Hypertension,” Tohoku J. Exp. Med., vol. 181, no. 3, pp. 379–384, 1997.

P. Herve et al., “Pathobiology of pulmonary hypertension. The role of platelets and thrombosis.,” Clin. Chest Med., vol. 22, no. 3, pp. 451–458, Sep. 2001.

I. C. Haznedaroglu et al., “Thrombopoietin inside the pulmonary vessels in patients with and without pulmonary hypertension.,” Platelets, vol. 13, no. 7, pp. 395–399, Nov. 2002.

Y.-G. Zheng et al., “Platelet Distribution Width and Mean Platelet Volume in Idiopathic Pulmonary Arterial Hypertension,” Hear. Lung Circ., vol. 24, no. 6, pp. 566–572, 2015.

A. Remková, I. Šimková, and T. Valkovičová, “Platelet abnormalities in chronic thromboembolic pulmonary hypertension,” Int. J. Clin. Exp. Med., vol. 8, no. 6, pp. 9700–9707, 2015.

N. Yaoita et al., “Platelets are highly activated in patients of chronic thromboembolic pulmonary hypertension.,” Arterioscler. Thromb. Vasc. Biol., vol. 34, no. 11, pp. 2486–2494, Nov. 2014.

Y. Suzuki et al., “Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase.,” Blood, vol. 93, no. 10, pp. 3408–3417, May 1999.

H. Nishioka, H. Horiuchi, A. Tabuchi, A. Yoshioka, R. Shirakawa, and T. Kita, “Small GTPase Rho Regulates Thrombin-Induced Platelet Aggregation,” Biochem. Biophys. Res. Commun., vol. 280, no. 4, pp. 970–975, 2001.

M. M. Can et al., “Enhanced hemostatic indices in patients with pulmonary arterial hypertension: an observational study.,” Thromb. Res., vol. 126, no. 4, pp. 280–282, Oct. 2010.

N. Y. Maeda, S. P. Bydlowski, and A. A. Lopes, “Increased tyrosine phosphorylation of platelet proteins including pp125(FAK) suggests endogenous activation and aggregation in pulmonary hypertension.,” Clin. Appl. Thromb. Hemost., vol. 11, no. 4, pp. 411–415, Oct. 2005.

R. Rajkumar et al., “Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension.,” Am. J. Physiol. Heart Circ. Physiol., vol. 298, no. 4, pp. H1235-48, Apr. 2010.

J. K. Damas et al., “Soluble CD40 ligand in pulmonary arterial hypertension: possible pathogenic role of the interaction between platelets and endothelial cells.,” Circulation, vol. 110, no. 8, pp. 999–1005, Aug. 2004.

K. Sase and T. Michel, “Expression of constitutive endothelial nitric oxide synthase in human blood platelets.,” Life Sci., vol. 57, no. 22, pp. 2049–2055, 1995.

S. Gambaryan and D. Tsikas, “A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite?,” Amino Acids, vol. 47, no. 9, pp. 1779–1793, 2015.

.

.

.

.

.

.

.

Van Engeland, N. C. A., Pollet, A. M. A. O., den Toonder, J. M. J., Bouten, C. V. C., Stassen, O. M. J. A., & Sahlgren, C. M. (2018). A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab on a Chip, 18(11), 1607–1620. doi:10.1039/c8lc00286j.

Jin, Q., Bhatta, A., Pagaduan, J. V., Chen, X., West-Foyle, H., Liu, J., … Romer, L. H. (2020). Biomimetic human small muscular pulmonary arteries. Science Advances, 6(13), eaaz2598. doi:10.1126/sciadv.aaz2598.

Al-Hilal, T. A., Keshavarz, A., Kadry, H., Lahooti, B., Al-Obaida, A., Ding, Z., … Ahsan, F. (2020). Pulmonary-arterial-hypertension (PAH)-on-a-chip: fabrication, validation and application. Lab on a Chip, 20(18), 3334–3345. doi:10.1039/d0lc00605j.


Full Text: PDF

DOI: 10.28991/SciMedJ-2020-0204-7

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Salina Nicoleau, Beata Wojciak-Stothard